Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Linear 2-alkylaminoethyl-1,1-bisphosphonates are effective agents against proliferation of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas disease), exhibiting IC 50 values in the nanomolar range against the parasites. This activity is associated with inhibition at the low nanomolar level of the T. cruzi farnesyl diphosphate synthase (TcFPPS). X-ray structures and thermodynamic data of the complexes TcFPPS with five compounds of this family show that the inhibitors bind to the allylic site of the enzyme, with their alkyl chain occupying the cavity that binds the isoprenoid chain of the substrate. The compounds bind to TcFPPS with unfavorable enthalpy compensated by a favorable entropy that results from a delicate balance between two opposing effects: the loss of conformational entropy due to freezing of single bond rotations and the favorable burial of the hydrophobic alkyl chains. The data suggest that introduction of strategically placed double bonds and methyl branches should increase affinity substantially. © 2012 American Chemical Society.

Registro:

Documento: Artículo
Título:Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of trypanosoma cruzi farnesyl diphosphate synthase
Autor:Aripirala, S.; Szajnman, S.H.; Jakoncic, J.; Rodriguez, J.B.; Docampo, R.; Gabelli, S.B.; Amzel, L.M.
Filiación:Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
Brookhaven National Laboratory, National Synchrotron Light Source, Upton, NY 11973, United States
Departamento de Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
Center for Tropical and Global Emerging Diseases, Department of Cellular Biology, University of Georgia, Athens, GA 30606, United States
Palabras clave:alkyl group; allyl compound; amine; antitrypanosomal agent; bisphosphonic acid derivative; geranyltransferase; geranyltransferase inhibitor; isoprenoid; methyl group; unclassified drug; article; binding affinity; Chagas disease; chemical bond; complex formation; conformation; crystal structure; drug design; drug protein binding; drug synthesis; enthalpy; entropy; enzyme active site; enzyme inhibition; hydrophobicity; IC 50; isothermal titration calorimetry; nonhuman; structure activity relation; thermodynamics; Trypanosoma cruzi; X ray crystallography; Calorimetry; Crystallography, X-Ray; Drug Design; Enzyme Inhibitors; Geranyltranstransferase; Magnesium; Models, Molecular; Phosphonic Acids; Protein Conformation; Thermodynamics; Trypanosoma cruzi
Año:2012
Volumen:55
Número:14
Página de inicio:6445
Página de fin:6454
DOI: http://dx.doi.org/10.1021/jm300425y
Título revista:Journal of Medicinal Chemistry
Título revista abreviado:J. Med. Chem.
ISSN:00222623
CODEN:JMCMA
CAS:geranyltransferase, 37277-79-5, 50812-36-7; Enzyme Inhibitors; Geranyltranstransferase, 2.5.1.10; Magnesium, 7439-95-4; Phosphonic Acids
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222623_v55_n14_p6445_Aripirala

Referencias:

  • Urbina, J.A., Docampo, R., Specific chemotherapy of Chagas disease: Controversies and advances (2003) Trends Parasitol., 19, pp. 495-501
  • Tropical Diseases, , http://www.who.int/topics/tropical_diseases/en/, World Health Organization: Geneva
  • Brener, Z., Biology of Trypanosoma cruzi (1973) Annu. Rev. Microbiol., 27, pp. 347-382
  • Kirchhoff, L.V., American trypanosomiasis (Chagas' disease)-a tropical disease now in the United States (1993) N. Engl. J. Med., 329, pp. 639-644
  • Galel, S.A., Kirchhoff, L.V., Risk factors for Trypanosoma cruzi infection in California blood donors (1996) Transfusion, 36, pp. 227-231
  • Urbina, J.A., Specific chemotherapy of Chagas disease: Relevance, current limitations and new approaches (2010) Acta Trop., 115, pp. 55-68
  • Roelofs, A.J., Thompson, K., Ebetino, F.H., Rogers, M.J., Coxon, F.P., Bisphosphonates: Molecular mechanisms of action and effects on bone cells, monocytes and macrophages (2010) Curr. Pharm. Des., 16, pp. 2950-2960
  • Reszka, A.A., Rodan, G.A., Nitrogen-containing bisphosphonate mechanism of action (2004) Mini Rev. Med. Chem., 4, pp. 711-719
  • Russell, R.G., Rogers, M.J., Bisphosphonates: From the laboratory to the clinic and back again (1999) Bone, 25, pp. 97-106
  • Reszka, A.A., Rodan, G.A., Mechanism of action of bisphosphonates (2003) Curr. Osteoporos Rep., 1, pp. 45-52
  • Fleisch, H., Russell, R.G., Straumann, F., Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis (1966) Nature, 212, pp. 901-903
  • Fleisch, H., Russell, R.G., Francis, M.D., Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo (1969) Science, 165, pp. 1262-1264
  • Francis, M.D., Russell, R.G., Fleisch, H., Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo (1969) Science, 165, pp. 1264-1266
  • Urbina, J.A., Moreno, B., Vierkotter, S., Oldfield, E., Payares, G., Sanoja, C., Bailey, B.N., Docampo, R., Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs (1999) J. Biol. Chem., 274, pp. 33609-33615
  • Hughes, D.E., Wright, K.R., Uy, H.L., Sasaki, A., Yoneda, T., Roodman, G.D., Mundy, G.R., Boyce, B.F., Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo (1995) J. Bone Miner. Res., 10, pp. 1478-1487
  • Rogers, M.J., Frith, J.C., Luckman, S.P., Coxon, F.P., Benford, H.L., Monkkonen, J., Auriola, S., Russell, R.G., Molecular mechanisms of action of bisphosphonates (1999) Bone, 24, pp. 73S-79S
  • Kavanagh, K.L., Guo, K., Dunford, J.E., Wu, X., Knapp, S., Ebetino, F.H., Rogers, M.J., Oppermann, U., The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs (2006) Proc. Natl. Acad. Sci. U.S.A, 103, pp. 7829-7834
  • Hosfield, D.J., Zhang, Y., Dougan, D.R., Broun, A., Tari, L.W., Swanson, R.V., Finn, J., Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis (2004) J. Biol. Chem., 279, pp. 8526-8529
  • Rondeau, J.M., Bitsch, F., Bourgier, E., Geiser, M., Hemmig, R., Kroemer, M., Lehmann, S., Jahnke, W., Structural basis for the exceptional in vivo efficacy of bisphosphonate drugs (2006) ChemMedChem, 1, pp. 267-273
  • Cheng, F., Oldfield, E., Inhibition of isoprene biosynthesis pathway enzymes by phosphonates, bisphosphonates, and diphosphates (2004) J. Med. Chem., 47, pp. 5149-5158
  • Dunford, J.E., Thompson, K., Coxon, F.P., Luckman, S.P., Hahn, F.M., Poulter, C.D., Ebetino, F.H., Rogers, M.J., Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates (2001) J. Pharmacol. Exp. Ther., 296, pp. 235-242
  • Van Beek, E., Pieterman, E., Cohen, L., Lowik, C., Papapoulos, S., Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates (1999) Biochem. Biophys. Res. Commun., 264, pp. 108-111
  • Coxon, F.P., Thompson, K., Rogers, M.J., Recent advances in understanding the mechanism of action of bisphosphonates (2006) Curr. Opin. Pharmacol., 6, pp. 307-312
  • Sanders, J.M., Ghosh, S., Chan, J.M., Meints, G., Wang, H., Raker, A.M., Song, Y., Oldfield, E., Quantitative structure-activity relationships for gammadelta T cell activation by bisphosphonates (2004) J. Med. Chem., 47, pp. 375-384
  • Reddy, R., Dietrich, E., Lafontaine, Y., Houghton, T.J., Belanger, O., Dubois, A., Arhin, F.F., Rafai Far, A., Bisphosphonated benzoxazinorifamycin prodrugs for the prevention and treatment of osteomyelitis (2008) ChemMedChem, 3, pp. 1863-1868
  • Forlani, G., Giberti, S., Berlicki, L., Petrollino, D., Kafarski, P., Plant P5C reductase as a new target for aminomethylenebisphosphonates (2007) J. Agric. Food Chem., 55, pp. 4340-4347
  • Clezardin, P., Massaia, M., Nitrogen-containing bisphosphonates and cancer immunotherapy (2010) Curr. Pharm. Des., 16, pp. 3007-2014
  • Miller, K., Erez, R., Segal, E., Shabat, D., Satchi-Fainaro, R., Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate (2009) Angew. Chem., Int. Ed. Engl., 48, pp. 2949-2954
  • Zhang, Y., Cao, R., Yin, F., Hudock, M.P., Guo, R.T., Krysiak, K., Mukherjee, S., Oldfield, E., Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: An X-ray and NMR investigation (2009) J. Am. Chem. Soc., 131, pp. 5153-5162
  • Coleman, R.E., Risks and benefits of bisphosphonates (2008) Br. J. Cancer, 98, pp. 1736-1740
  • Docampo, R., Moreno, S.N., The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites (2008) Curr. Pharm. Des., 14, pp. 882-888
  • Oldfield, E., Targeting isoprenoid biosynthesis for drug discovery: Bench to bedside (2010) Acc. Chem. Res., 43, pp. 1216-1226
  • Ghosh, S., Chan, J.M., Lea, C.R., Meints, G.A., Lewis, J.C., Tovian, Z.S., Flessner, R.M., Oldfield, E., Effects of bisphosphonates on the growth of Entamoeba histolytica and Plasmodium species in vitro and in vivo (2004) J. Med. Chem., 47, pp. 175-187
  • Martin, M.B., Grimley, J.S., Lewis, J.C., Iii, T.H.H., Bailey, B.N., Kendrick, H., Yardley, V., Oldfield, E., Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: A potential route to chemotherapy (2001) J. Med. Chem., 44, pp. 909-916
  • Yardley, V., Khan, A.A., Martin, M.B., Slifer, T.R., Araujo, F.G., Moreno, S.N., Docampo, R., Oldfield, E., In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii (2002) Antimicrob. Agents Chemother., 46, pp. 929-931
  • Bouzahzah, B., Jelicks, L.A., Morris, S.A., Weiss, L.M., Tanowitz, H.B., Risedronate in the treatment of Murine Chagas' disease (2005) Parasitol. Res., 96, pp. 184-187
  • Martin, M.B., Sanders, J.M., Kendrick, H., De Luca-Fradley, K., Lewis, J.C., Grimley, J.S., Van Brussel, E.M., Oldfield, E., Activity of bisphosphonates against Trypanosoma brucei rhodesiense (2002) J. Med. Chem., 45, pp. 2904-2914
  • Rosso, V.S., Szajnman, S.H., Malayil, L., Galizzi, M., Moreno, S.N., Docampo, R., Rodriguez, J.B., Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1- bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase (2011) Bioorg. Med. Chem., 19, pp. 2211-2217
  • Szajnman, S.H., Bailey, B.N., Docampo, R., Rodriguez, J.B., Bisphosphonates derived from fatty acids are potent growth inhibitors of Trypanosoma cruzi (2001) Bioorg. Med. Chem. Lett., 11, pp. 789-792
  • Szajnman, S.H., Garcia Linares, G.E., Li, Z.H., Jiang, C., Galizzi, M., Bontempi, E.J., Ferella, M., Rodriguez, J.B., Synthesis and biological evaluation of 2-alkylaminoethyl-1,1- bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase (2008) Bioorg. Med. Chem., 16, pp. 3283-3290
  • Szajnman, S.H., Montalvetti, A., Wang, Y., Docampo, R., Rodriguez, J.B., Bisphosphonates derived from fatty acids are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase (2003) Bioorg. Med. Chem. Lett., 13, pp. 3231-3235
  • Szajnman, S.H., Ravaschino, E.L., Docampo, R., Rodriguez, J.B., Synthesis and biological evaluation of 1-amino-1,1-bisphosphonates derived from fatty acids against Trypanosoma cruzi targeting farnesyl pyrophosphate synthase (2005) Bioorg. Med. Chem. Lett., 15, pp. 4685-4690
  • Ling, Y., Sahota, G., Odeh, S., Chan, J.M., Araujo, F.G., Moreno, S.N., Oldfield, E., Bisphosphonate inhibitors of Toxoplasma gondii growth: In vitro, QSAR, and in vivo investigations (2005) J. Med. Chem., 48, pp. 3130-3140
  • Laskovics, F.M., Krafcik, J.M., Poulter, C.D., Prenyltransferase. Kinetic studies of the 1′-4 coupling reaction with avian liver enzyme (1979) J. Biol. Chem., 254, pp. 9458-9463
  • Laskovics, F.M., Poulter, C.D., Prenyltransferase; Determination of the binding mechanism and individual kinetic constants for farnesylpyrophosphate synthetase by rapid quench and isotope partitioning experiments (1981) Biochemistry, 20, pp. 1893-1901
  • Poulter, C.D., Argyle, J.C., Mash, E.A., Farnesyl pyrophosphate synthetase. Mechanistic studies of the 1′-4 coupling reaction with 2-fluorogeranyl pyrophosphate (1978) J. Biol. Chem., 253, pp. 7227-7233
  • Ding, V.D., Sheares, B.T., Bergstrom, J.D., Ponpipom, M.M., Perez, L.B., Poulter, C.D., Purification and characterization of recombinant human farnesyl diphosphate synthase expressed in Escherichia coli (1991) Biochem. J., 275 (PART 1), pp. 61-65
  • Gabelli, S.B., McLellan, J.S., Montalvetti, A., Oldfield, E., Docampo, R., Amzel, L.M., Structure and mechanism of the farnesyl diphosphate synthase from Trypanosoma cruzi: Implications for drug design (2006) Proteins, 62, pp. 80-88
  • Ohnuma, S., Nakazawa, T., Hemmi, H., Hallberg, A.M., Koyama, T., Ogura, K., Nishino, T., Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis (1996) J. Biol. Chem., 271, pp. 10087-10095
  • Tarshis, L.C., Proteau, P.J., Kellogg, B.A., Sacchettini, J.C., Poulter, C.D., Regulation of product chain length by isoprenyl diphosphate synthases (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 15018-15023
  • Narita, K., Ohnuma, S., Nishino, T., Protein design of geranyl diphosphate synthase. Structural features that define the product specificities of prenyltransferases (1999) J. Biochem., 126, pp. 566-571
  • Huang, C.H., Gabelli, S.B., Oldfield, E., Amzel, L.M., Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer (2010) Proteins, 78, pp. 888-899
  • Szajnman, S.H., Linares, G.G., Moro, P., Rodriguez, J.B., New insights into the chemistry of gem -bis(phosphonates): Unexpected rearrangement of Michael-type acceptors (2005) Eur. J. Org. Chem., pp. 3687-3696
  • Degenhardt, C.R., Burdsall, D.C., Synthesis of Ethenylidenebis(Phosphonic Acid) and Its Tetraalkyl Esters (1986) J. Org. Chem., 51, pp. 3488-3490
  • Lazzarato, L., Rolando, B., Lolli, M.L., Tron, G.C., Fruttero, R., Gasco, A., Deleide, G., Guenther, H.L., Synthesis of NO-donor bisphosphonates and their in vitro action on bone resorption (2005) J. Med. Chem., 48, pp. 1322-1329
  • Huang, C.H., Gabelli, S.B., Oldfield, E., Amzel, L.M., Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer (2010) Proteins: Struct., Funct., Bioinf., 78, pp. 888-899
  • Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Macromol. Crystallogr., Part A, 276, pp. 307-326
  • Winn, M.D., Isupov, M.N., Murshudov, G.N., Use of TLS parameters to model anisotropic displacements in macromolecular refinement (2001) Acta Crystallogr., Sect. D: Biol. Crystallogr., 57, pp. 122-133
  • Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Vagin, A.A., REFMAC5 for the refinement of macromolecular crystal structures (2011) Acta Crystallogr., Sect. D: Biol. Crystallogr., 67, pp. 355-367
  • Bailey, S., The Ccp4 Suite-Programs for Protein Crystallography (1994) Acta Crystallogr., Sect. D: Biol. Crystallogr., 50, pp. 760-763
  • Navaza, J., Amore-An Automated Package for Molecular Replacement (1994) Acta Crystallogr., Sect. A: Found. Crystallogr., 50, pp. 157-163
  • Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr., Sect. D: Biol. Crystallogr., 66, pp. 486-501
  • Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., Procheck-A Program to Check the Stereochemical Quality of Protein Structures (1993) J. Appl. Crystallogr., 26, pp. 283-291
  • Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., Errors in protein structures (1996) Nature, 381, p. 272
  • Hooft, R.W.W., Sander, C., Vriend, G., Verification of protein structures: Side-chain planarity (1996) J. Appl. Crystallogr., 29, pp. 714-716
  • Kraulis, P.J., Molscript-A Program to Produce Both Detailed and Schematic Plots of Protein Structures (1991) J. Appl. Crystallogr., 24, pp. 946-950

Citas:

---------- APA ----------
Aripirala, S., Szajnman, S.H., Jakoncic, J., Rodriguez, J.B., Docampo, R., Gabelli, S.B. & Amzel, L.M. (2012) . Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of trypanosoma cruzi farnesyl diphosphate synthase. Journal of Medicinal Chemistry, 55(14), 6445-6454.
http://dx.doi.org/10.1021/jm300425y
---------- CHICAGO ----------
Aripirala, S., Szajnman, S.H., Jakoncic, J., Rodriguez, J.B., Docampo, R., Gabelli, S.B., et al. "Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of trypanosoma cruzi farnesyl diphosphate synthase" . Journal of Medicinal Chemistry 55, no. 14 (2012) : 6445-6454.
http://dx.doi.org/10.1021/jm300425y
---------- MLA ----------
Aripirala, S., Szajnman, S.H., Jakoncic, J., Rodriguez, J.B., Docampo, R., Gabelli, S.B., et al. "Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of trypanosoma cruzi farnesyl diphosphate synthase" . Journal of Medicinal Chemistry, vol. 55, no. 14, 2012, pp. 6445-6454.
http://dx.doi.org/10.1021/jm300425y
---------- VANCOUVER ----------
Aripirala, S., Szajnman, S.H., Jakoncic, J., Rodriguez, J.B., Docampo, R., Gabelli, S.B., et al. Design, synthesis, calorimetry, and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of trypanosoma cruzi farnesyl diphosphate synthase. J. Med. Chem. 2012;55(14):6445-6454.
http://dx.doi.org/10.1021/jm300425y