Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In affirmative, the equivariant inverse problem for Maxwell-type Euler-Lagrange expressions is solved. This allows the proof of the uniqueness of the Maxwell equations. © 1987 American Institute of Physics.

Registro:

Documento: Artículo
Título:The equivariant inverse problem and the Maxwell equations
Autor:Noriega, R.J.; Schifini, C.G.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Año:1987
Volumen:28
Número:4
Página de inicio:815
Página de fin:817
DOI: http://dx.doi.org/10.1063/1.527568
Título revista:Journal of Mathematical Physics
ISSN:00222488
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00222488_v28_n4_p815_Noriega.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222488_v28_n4_p815_Noriega

Referencias:

  • The tensor [formula omitted] is the metric tensor of a four-space-time manifold and [formula omitted] We use the summation convention and we raise and lower indices with [formula omitted] and [formula omitted] We denote [formula omitted] where [formula omitted] are the Levi-Civita permutation symbols. The vertical bar stands for covariant derivative and the comma stands for the usual partial derivative. Here, [formula omitted] is the charge-current vector; This is not true for all dimensions. If it is 3, then [formula omitted] is of the form (1.7) and satisfies (1.8) with [formula omitted] but L cannot be replaced by a gauge invariant Lagrangian. See, for example, M. C. Calvo, C. Lopez, R. J. Noriega, and C. G. Schifini, “Gauge invariance of Euler-Lagrange expressions in Einstein-Yang-Mills field theories,” submitted to Gen. Relativ. Gravit; Anderson, I.M., (1984) Ann. Math., 120, p. 329
  • Horndeski, G.W., (1978) Tensor (N.S.), 32 (2), p. 131
  • Kerrighan, B., (1981) Gen. Relativ. Gravit., 13 (1), p. 19
  • Anderson, I.M., Duchamp, T., (1980) Am. J. Math., 102 (5), p. 781
  • Noriega, R.J., Schifini, C.G., (1984) Gen. Relativ. Gravit., 16 (3), p. 292
  • Hlavatý, V., (1952) J. Rat. Mech. Anal., 1, p. 539

Citas:

---------- APA ----------
Noriega, R.J. & Schifini, C.G. (1987) . The equivariant inverse problem and the Maxwell equations. Journal of Mathematical Physics, 28(4), 815-817.
http://dx.doi.org/10.1063/1.527568
---------- CHICAGO ----------
Noriega, R.J., Schifini, C.G. "The equivariant inverse problem and the Maxwell equations" . Journal of Mathematical Physics 28, no. 4 (1987) : 815-817.
http://dx.doi.org/10.1063/1.527568
---------- MLA ----------
Noriega, R.J., Schifini, C.G. "The equivariant inverse problem and the Maxwell equations" . Journal of Mathematical Physics, vol. 28, no. 4, 1987, pp. 815-817.
http://dx.doi.org/10.1063/1.527568
---------- VANCOUVER ----------
Noriega, R.J., Schifini, C.G. The equivariant inverse problem and the Maxwell equations. 1987;28(4):815-817.
http://dx.doi.org/10.1063/1.527568