Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We deal with a nonlocal nonlinear evolution problem of the form ∬Rn×RJ(x−y,t−s)|v‾(y,s)−v(x,t)|p−2(v‾(y,s)−v(x,t))dyds=0 for (x,t)∈Rn×[0,∞). Here p≥2, J:Rn+1→R is a nonnegative kernel, compactly supported inside the set {(x,t)∈Rn+1:t≥0} with ∬Rn×RJ(x,t)dxdt=1 and v‾ stands for an extension of a given initial value f, that is, v‾(x,t)={v(x,t)t≥0,f(x,t)t<0. For this problem we prove existence and uniqueness of a solution. In addition, we show that the solutions approximate viscosity solutions to the local nonlinear PDE ‖∇u‖p−2ut=Δpu when the kernel is rescaled in a suitable way. © 2017 Elsevier Inc.

Registro:

Documento: Artículo
Título:Nonlinear evolution equations that are non-local in space and time
Autor:Beltritti, G.; Rossi, J.D.
Filiación:CONICET, Departamento de Matemática, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nac. 36 Km 601, Río Cuarto, Córdoba 5800, Argentina
CONICET, Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Mean value properties; Nonlocal evolution problems; p-Laplacian
Año:2017
Volumen:455
Número:2
Página de inicio:1470
Página de fin:1504
DOI: http://dx.doi.org/10.1016/j.jmaa.2017.06.059
Título revista:Journal of Mathematical Analysis and Applications
Título revista abreviado:J. Math. Anal. Appl.
ISSN:0022247X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v455_n2_p1470_Beltritti

Referencias:

  • Aimar, H., Beltritti, G., Gomez, I., Continuous time random walks and the Cauchy problem for the heat equation (2017) J. Anal. Math., , in press
  • Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J., A nonlocal p-Laplacian evolution equation with Neumann boundary conditions (2008) J. Math. Pures Appl., 90, pp. 201-227
  • Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J., A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions (2008) SIAM J. Math. Anal., 40, pp. 1815-1851
  • Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J., The limit as p→∞ in a nonlocal p-Laplacian evolution equation: a nonlocal approximation of a model for sandpiles (2009) Calc. Var., 35, pp. 279-316
  • Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo, J., Nonlocal Diffusion Problems (2010) Math. Surveys Monogr., 165. , AMS
  • Banerjee, A., Garofalo, N., Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations (2013) Indiana Univ. Math. J., 62 (2), pp. 699-736
  • Banerjee, A., Garofalo, N., Modica type gradient estimates for an inhomogeneous variant of the normalized p-Laplacian evolution (2015) Nonlinear Anal., 121, pp. 458-468
  • Banerjee, A., Garofalo, N., On the Dirichlet boundary value problem for the normalized p-Laplacian evolution (2015) Commun. Pure Appl. Anal., 14 (1), pp. 1-21
  • Crandall, M.G., Ishii, H., Lions, P.L., User's guide to viscosity solutions of second order partial differential equations (1992) Bull. Amer. Math. Soc., 27, pp. 1-67
  • Del Pezzo, L., Quaas, A., Global bifurcation for fractional p-Laplacian and an application (2016) Z. Anal. Anwend., 35 (4), pp. 411-447
  • Does, K., An evolution equation involving the normalized p-Laplacian (2011) Commun. Pure Appl. Anal., 10 (1), pp. 361-396
  • Gess, B., Tolle, M., Ergodicity and local limits for stochastic local and nonlocal p-Laplace equations (2016) SIAM J. Math. Anal., 48 (6), pp. 4094-4195
  • Jin, T., Silvestre, L., Hölder gradient estimates for parabolic homogeneous p-Laplacian equations (2017) J. Math. Pures Appl., 108 (1), pp. 63-87
  • Lewicka, M., Manfredi, J.J., Game theoretical methods in PDEs (2014) Boll. Unione Mat. Ital., 7 (3), pp. 211-216
  • Manfredi, J.J., Parviainen, M., Rossi, J.D., An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games (2010) SIAM J. Math. Anal., 42 (5), pp. 2058-2081
  • Mazon, J.M., Rossi, J.D., Toledo, J., Fractional p-Laplacian evolution equations (2016) J. Math. Pures Appl. (9), 105 (6), pp. 810-844
  • Puhst, D., On the evolutionary fractional p-Laplacian (2015) Appl. Math. Res. Express. AMRX, (2), pp. 253-273
  • Rossi, J.D., Tug-of-war games and PDEs (2011) Proc. Roy. Soc. Edinburgh Sect. A, 141 (2), pp. 319-369
  • Vazquez, J.L., The Dirichlet problem for the fractional p-Laplacian evolution equation (2016) J. Differential Equations, 260 (7), pp. 6038-6056

Citas:

---------- APA ----------
Beltritti, G. & Rossi, J.D. (2017) . Nonlinear evolution equations that are non-local in space and time. Journal of Mathematical Analysis and Applications, 455(2), 1470-1504.
http://dx.doi.org/10.1016/j.jmaa.2017.06.059
---------- CHICAGO ----------
Beltritti, G., Rossi, J.D. "Nonlinear evolution equations that are non-local in space and time" . Journal of Mathematical Analysis and Applications 455, no. 2 (2017) : 1470-1504.
http://dx.doi.org/10.1016/j.jmaa.2017.06.059
---------- MLA ----------
Beltritti, G., Rossi, J.D. "Nonlinear evolution equations that are non-local in space and time" . Journal of Mathematical Analysis and Applications, vol. 455, no. 2, 2017, pp. 1470-1504.
http://dx.doi.org/10.1016/j.jmaa.2017.06.059
---------- VANCOUVER ----------
Beltritti, G., Rossi, J.D. Nonlinear evolution equations that are non-local in space and time. J. Math. Anal. Appl. 2017;455(2):1470-1504.
http://dx.doi.org/10.1016/j.jmaa.2017.06.059