Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The notion of p-compact sets arises naturally from Grothendieck's characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κ p). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κ p-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010). © 2012 Elsevier Inc.

Registro:

Documento: Artículo
Título:On p-compact mappings and the p-approximation property
Autor:Lassalle, S.; Turco, P.
Filiación:Departamento de Matemática, Pab I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
IMAS, CONICET, Argentina
Palabras clave:Approximation properties; Holomorphic mappings; P-Compact sets
Año:2012
Volumen:389
Número:2
Página de inicio:1204
Página de fin:1221
DOI: http://dx.doi.org/10.1016/j.jmaa.2011.12.058
Título revista:Journal of Mathematical Analysis and Applications
Título revista abreviado:J. Math. Anal. Appl.
ISSN:0022247X
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_0022247X_v389_n2_p1204_Lassalle.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v389_n2_p1204_Lassalle

Referencias:

  • Aron, R., Berner, P., A Hahn-Banach extension theorem for analytic mappings (1978) Bull. Soc. Math. France, 106, pp. 3-24
  • Aron, R., Maestre, M., Rueda, P., P-Compact holomorphic mappings (2010) RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 104 (2), pp. 353-364
  • Aron, R., Rueda, P., P-Compact homogeneous polynomials from an ideal point of view (2011) Contemp. Math., Amer. Math. Soc., 547, pp. 61-71
  • Aron, R., Rueda, P., I-bounded holomorphic functions, preprint ; Aron, R., Schottenloher, M., Compact holomorphic mappings and the approximation property (1976) J. Funct. Anal., 21, pp. 7-30
  • Boyd, C., Dineen, S., Rueda, P., Weakly uniformly continuous holomorphic functions and the approximation property (2001) Indag. Math. (N.S.), 12 (2), pp. 147-156
  • Çalişkan, E., The bounded approximation property for spaces of holomorphic mappings on infinite dimensional spaces (2006) Math. Nachr., 279 (7), pp. 705-715
  • Carando, D., Dimant, V., Muro, S., Coherent sequences of polynomial ideals on Banach spaces (2009) Math. Nachr., 282 (8), pp. 1111-1133
  • Casazza, P.G., Approximation properties (2001) Handbook of the Geometry of Banach Spaces, vol. I, pp. 271-316. , North-Holland, Amsterdam
  • Choi, Y.S., Kim, J.M., The dual space of (L(X,Y);τp) and the p-approximation property (2010) J. Funct. Anal., 259, pp. 2437-2454
  • Davie, A.M., Gamelin, T.W., A theorem on polynomial-star approximation (1989) Proc. Amer. Math. Soc., 106 (2), pp. 351-356
  • Delgado, J.M., Oja, E., Piñeiro, C., Serrano, E., The p-approximation property in terms of density of finite rank operators (2009) J. Math. Anal. Appl., 354, pp. 159-164
  • Delgado, J.M., Piñeiro, C., Serrano, E., Density of finite rank operators in the Banach space of p-compact operators (2010) J. Math. Anal. Appl., 370, pp. 498-505
  • Delgado, J.M., Piñeiro, C., Serrano, E., Operators whose adjoints are quasi p-nuclear (2010) Studia Math., 197 (3), pp. 291-304
  • Dineen, S., Holomorphy types on a Banach space (1971) Studia Math., 39, pp. 241-288
  • Dineen, S., Complex Analysis of Infinite Dimensional Spaces (1999) Springer Monogr. Math., , Springer
  • Dineen, S., Mujica, J., The approximation property for spaces of holomorphic functions on infinite-dimensional spaces. I (2004) J. Approx. Theory, 126 (2), pp. 141-156
  • Dineen, S., Mujica, J., The approximation property for spaces of holomorphic functions on infinite-dimensional spaces. II (2010) J. Funct. Anal., 259 (2), pp. 545-560
  • Enflo, P., A counterexample to the approximation problem in Banach spaces (1973) Acta Math., 130 (1), pp. 309-317
  • Galicer, D., Lassalle, S., Turco, P., The ideal of p-compact operators: a tensor product approach, preprint ; Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires (1955) Mem. Amer. Math. Soc., (16), p. 140
  • Lassalle, S., Turco, P., On p-approximation properties and operator ideals in preparation; Lindenstrauss, J., Tzafriri, L., (1977) Classical Banach Spaces. I, vol. 92, , Springer-Verlag, Berlin, New York
  • Mujica, J., Complex Analysis in Banach Spaces (1986) Math. Stud., 120. , North-Holland, Amsterdam
  • Mujica, J., Linearization of bounded holomorphic mappings on Banach spaces (1991) Trans. Amer. Math. Soc., 324 (2), pp. 867-887
  • Nachbin, L., Topology on Spaces of Holomorphic Mappings (1969) Ergeb. Math. Grenzgeb., 47. , Springer-Verlag, Berlin
  • Nachbin, L., Concernig holomorphy types for Banach spaces (1970) Studia Math., 38, pp. 407-412
  • Persson, A., Pietsch, A., P-Nukleare une p-integrale Abbildungen in Banachräumen (1969) Studia Math., 33, pp. 19-62. , (in German)
  • Schwartz, L., Théorie des distributions à valeurs vectorielles. I (1957) Ann. Inst. Fourier (Grenoble), 7, pp. 1-141. , (in French)
  • Sinha, D.P., Karn, A.K., Compact operators whose adjoints factor through subspaces of ℓ p (2002) Studia Math., 150, pp. 17-33
  • Sinha, D.P., Karn, A.K., Compact operators which factor through subspaces of ℓ p (2008) Math. Nachr., 281, pp. 412-423

Citas:

---------- APA ----------
Lassalle, S. & Turco, P. (2012) . On p-compact mappings and the p-approximation property. Journal of Mathematical Analysis and Applications, 389(2), 1204-1221.
http://dx.doi.org/10.1016/j.jmaa.2011.12.058
---------- CHICAGO ----------
Lassalle, S., Turco, P. "On p-compact mappings and the p-approximation property" . Journal of Mathematical Analysis and Applications 389, no. 2 (2012) : 1204-1221.
http://dx.doi.org/10.1016/j.jmaa.2011.12.058
---------- MLA ----------
Lassalle, S., Turco, P. "On p-compact mappings and the p-approximation property" . Journal of Mathematical Analysis and Applications, vol. 389, no. 2, 2012, pp. 1204-1221.
http://dx.doi.org/10.1016/j.jmaa.2011.12.058
---------- VANCOUVER ----------
Lassalle, S., Turco, P. On p-compact mappings and the p-approximation property. J. Math. Anal. Appl. 2012;389(2):1204-1221.
http://dx.doi.org/10.1016/j.jmaa.2011.12.058