Artículo

Brändle, C.; Quirós, F.; Rossi, J.D. "The role of non-linear diffusion in non-simultaneous blow-up" (2005) Journal of Mathematical Analysis and Applications. 308(1):92-104
Artículo de Acceso Abierto. Puede ser descargado en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study a parabolic system of two non-linear reaction-diffusion equations completely coupled through source terms and with power-like diffusivity. Under adequate hypotheses on the initial data, we prove that non-simultaneous blow-up is sometimes possible; i.e., one of the components blows up while the other remains bounded. The conditions for non-simultaneous blow-up rely strongly on the diffusivity parameters and significant differences appear between the fast-diffusion and the porous medium case. Surprisingly, flat (homogeneous in space) solutions are not always a good guide to determine whether non-simultaneous blow-up is possible. © 2004 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:The role of non-linear diffusion in non-simultaneous blow-up
Autor:Brändle, C.; Quirós, F.; Rossi, J.D.
Filiación:Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Blow-up; Non-linear diffusion; Parabolic system
Año:2005
Volumen:308
Número:1
Página de inicio:92
Página de fin:104
DOI: http://dx.doi.org/10.1016/j.jmaa.2004.11.004
Handle:http://hdl.handle.net/20.500.12110/paper_0022247X_v308_n1_p92_Brandle
Título revista:Journal of Mathematical Analysis and Applications
Título revista abreviado:J. Math. Anal. Appl.
ISSN:0022247X
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_0022247X_v308_n1_p92_Brandle.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v308_n1_p92_Brandle

Referencias:

  • Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P., (1995) Blow-up in Quasilinear Parabolic Equations De Gruyter Exp. Math., 19. , de Gruyter Berlin translated from the Russian original by Michael Grinfeld and revised by the authors
  • Quirós, F., Rossi, J.D., Non-simultaneous blow-up in a semilinear parabolic system (2001) Z. Angew. Math. Phys., 52, pp. 342-346
  • Souplet, P., Tayachi, S., Optimal condition for non-simultaneous blow-up in a reaction-diffusion system (2004) J. Math. Soc. Japan, 56, pp. 571-584
  • Hu, B., Yin, H.M., The profile near blowup time for solution of the heat equation with a non-linear boundary condition (1994) Trans. Amer. Math. Soc., 346, pp. 117-135
  • DiBenedetto, E., Continuity of weak solutions to a general porous medium equation (1983) Indiana Univ. Math. J., 32, pp. 83-118
  • Lieberman, G.M., (1996) Second Order Parabolic Differential Equations, , River Edge, NJ: World Scientific
  • Fila, M., Quittner, P., The blow-up rate for the heat equation with a non-linear boundary condition (1991) Math. Methods Appl. Sci., 14, pp. 197-205
  • Gilding, B.H., Peletier, L.A., On a class of similarity solutions of the porous media equation (1976) J. Math. Anal. Appl., 55, pp. 351-364
  • Gilding, B.H., Peletier, L.A., On a class of similarity solutions of the porous media equation. II (1977) J. Math. Anal. Appl., 57, pp. 522-538
  • Ferreira, R., de Pablo, A., Quirós, F., Rossi, J.D., The blow-up profile for a fast diffusion equation with a non-linear boundary condition (2003) Rocky Mountain J. Math., 33, pp. 123-146
  • Friedman, A., McLeod, B., Blow-up of positive solutions of semilinear heat equations (1985) Indiana Univ. Math. J., 34, pp. 425-447
  • Filo, J., Diffusivity versus absorption through the boundary (1992) J. Differential Equations, 99, pp. 281-305
  • Cortázar, C., Elgueta, M., Localization and boundedness of the solutions of the Neumann problem for a filtration equation (1989) Nonlinear Anal., 13, pp. 33-41
  • Gilding, B.H., Herrero, M.A., Localization and blow-up of thermal waves in non-linear heat conduction with peaking (1988) Math. Ann., 282, pp. 223-242
  • Friedman, A., (1964) Partial Differential Equations of Parabolic Type, , Englewood Cliffs, NJ: Prentice Hall

Citas:

---------- APA ----------
Brändle, C., Quirós, F. & Rossi, J.D. (2005) . The role of non-linear diffusion in non-simultaneous blow-up. Journal of Mathematical Analysis and Applications, 308(1), 92-104.
http://dx.doi.org/10.1016/j.jmaa.2004.11.004
---------- CHICAGO ----------
Brändle, C., Quirós, F., Rossi, J.D. "The role of non-linear diffusion in non-simultaneous blow-up" . Journal of Mathematical Analysis and Applications 308, no. 1 (2005) : 92-104.
http://dx.doi.org/10.1016/j.jmaa.2004.11.004
---------- MLA ----------
Brändle, C., Quirós, F., Rossi, J.D. "The role of non-linear diffusion in non-simultaneous blow-up" . Journal of Mathematical Analysis and Applications, vol. 308, no. 1, 2005, pp. 92-104.
http://dx.doi.org/10.1016/j.jmaa.2004.11.004
---------- VANCOUVER ----------
Brändle, C., Quirós, F., Rossi, J.D. The role of non-linear diffusion in non-simultaneous blow-up. J. Math. Anal. Appl. 2005;308(1):92-104.
http://dx.doi.org/10.1016/j.jmaa.2004.11.004