Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The purpose of this paper is to obtain n-dimensional inversion Laplace transform of retarded, Lorentz invariant functions by means of the passage to the limit of the rth-order derivative of the one-dimensional Laplace transform. This formula (IV.2) can be understood as a generalization of the one-dimensional formula due to Widder [Trans. Amer. Math. Soc.32 (1930)]. This topic is intimately related to the generalized differentiation, the symbolic treatment of the differential equations with constant coefficients and its application to important physical problems (cf. Leibnitz, Pincherle, Liouville, Riemann, Boole, 1-leaviside, and others). Our main theorem (Theorem 15, formula (IV.2)) can be related to a result due to E. Post [6] and we also obtain an equivalent Leray′s formula (cf. (VI.I)) and (VI.2)) which expresses the Laplace transform of retarded, Lorentz invariant functions by means of the mth-order derivative of a K0-transform. Our method consists, essentially, in the following two steps. First: the obtainment of an analog of Bochner′s formula for a Laplace transform of the form (II.1), where φ is a function of the Lorentz distance, whose support is contained in the closure of the domain t0 > 0, t20 - t21 - ··· -t2n - 1 > 0. Formula (II.2) permits us to evaluate n-dimensional integrals by means of a one-dimensional K-transform. This last result was already employed to solve partial differential equations of the hyperbolic type (cf. [A. Gonzalez Dominguez and E. E. Trione, Adv. Math.31 (1979), 51-62]). Second: The passage to the limit of the rth-order derivative of the one-dimensional Laplace transform (via the K-transform). The previous conclusions are related to the classical Functional Analysis and Probability (i.e., the theory of moments, the classical Weierstrass theorem approximation, on compact sets, of continuous functions by polynomials and the inversion of Laplace-Stieltjes integrals). Finally, by appealing to the analytical continuation, we can extend our results to the distributional n-dimensional Laplace integrals. © 1993 Academic Press. Inc. All rights reserved.

Registro:

Documento: Artículo
Título:On the N-Dimensional Inversion Laplace Transform of Retarded, Lorentz Invariant Functions
Autor:Trione, S.E.
Filiación:Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto Argentino de Matemática, Consejo Nacional de Investigaciones Científicas Técnicas, 1055 Buenos Aires, Argentina
Año:1993
Volumen:176
Número:2
Página de inicio:374
Página de fin:389
DOI: http://dx.doi.org/10.1006/jmaa.1993.1221
Título revista:Journal of Mathematical Analysis and Applications
Título revista abreviado:J. Math. Anal. Appl.
ISSN:0022247X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v176_n2_p374_Trione

Referencias:

  • Bernstein, S., (1928) Ouvrages Completes, 1
  • Feller, W., (1966) An Introduction to Probability Theory and Its Applications, 2. , New York
  • Feller, W., (1939) Duke Math. J., p. 5
  • Dolbourdieu, J., (1939) Composilio Math, p. 7
  • Stieltjes, T.J., Correspondance dHermite et de Stieltjes,” (1905) Tome, 2. , Gauthier-Villars, Paris
  • Post, E.L., (1930) Trans. Amer. Math. Soc., p. 32
  • Widder, D.V., (1934) Trans. Amer. Math. Soc., p. 36
  • Hille, E., Phillips, R.S., Functional Analysis and Semigroups (1957) Amer. Math. Soc., , Providence, RI
  • Gonzalez Dominguez, A., Trione, S.E., On the Laplace transforms of retarded, Lorentz invariant functions (1979) Adv. Math., 31, pp. 51-62
  • (1954) Tables of Integral Transforms, 1954 (2). , McGraw-Hill, New York
  • Leray, J., Hyperbolic differential equations (1952) Mimeographed Lecture Notes, , Institute of Advanced Study, Princeton, NJ
  • Bochner, S., (1932) Vorlesungen Iiber Fouriersche Integrale, Akad, , Verlagsgessellschaft, Leipzig
  • Riesz, M., L’integrale de Riemann-Liouville et le probleme de Cauchy (1949) Acta Math, 81, pp. 1-223
  • Zemanian, A.H., Generalized Integral Transformations (1968) Pure and Applied Mathematics, 18. , Interscience, New York
  • Boas, R.P., Inversion of generalized Laplace integral (1942) Proc. Nat. Acad. Sci. U.S.A., 28, pp. 21-24
  • Zemanian, A.H., A distributional A-transformation SIAM J. Appl. Math., 14, pp. 1350-1365
  • Post, E.L., Generalized differentiation (1930) Trans. Amer. Math. Soc., p. 32
  • Schwartz, L., Theorie des distributions (1966) Hermann, , Paris
  • Lavoine, J., Solutions de l’equation de Klein-Gordon (1961) Bull. Sci. Math. (2), 85, pp. 57-62
  • Vladimirov, V.S., Methods of the Theory of Functions of Several Complex Variables (1966) MIT Press, , Cambridge, MA

Citas:

---------- APA ----------
(1993) . On the N-Dimensional Inversion Laplace Transform of Retarded, Lorentz Invariant Functions. Journal of Mathematical Analysis and Applications, 176(2), 374-389.
http://dx.doi.org/10.1006/jmaa.1993.1221
---------- CHICAGO ----------
Trione, S.E. "On the N-Dimensional Inversion Laplace Transform of Retarded, Lorentz Invariant Functions" . Journal of Mathematical Analysis and Applications 176, no. 2 (1993) : 374-389.
http://dx.doi.org/10.1006/jmaa.1993.1221
---------- MLA ----------
Trione, S.E. "On the N-Dimensional Inversion Laplace Transform of Retarded, Lorentz Invariant Functions" . Journal of Mathematical Analysis and Applications, vol. 176, no. 2, 1993, pp. 374-389.
http://dx.doi.org/10.1006/jmaa.1993.1221
---------- VANCOUVER ----------
Trione, S.E. On the N-Dimensional Inversion Laplace Transform of Retarded, Lorentz Invariant Functions. J. Math. Anal. Appl. 1993;176(2):374-389.
http://dx.doi.org/10.1006/jmaa.1993.1221