Artículo

Gazzaniga, S.; Bravo, A.I.; Guglielmotti, A.; Van Rooijen, N.; Maschi, F.; Vecchi, A.; Mantovani, A.; Mordoh, J.; Wainstok, R. "Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft" (2007) Journal of Investigative Dermatology. 127(8):2031-2041
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Chemokines such as monocyte chemoattractant protein (MCP)-1 are key agonists that attract macrophages to tumors. In melanoma, it has been previously shown that variable levels of MCP-1/CCL2 appear to correlate with infiltrating macrophages and tumor fate, with low to intermediate levels of the chemokine contributing to melanoma development. To work under such conditions, a poorly tumorigenic human melanoma cell line was transfected with an expression vector encoding MCP-1. We found that M2 macrophages are associated to MCP-1+ tumors, triggering a profuse vascular network. To target the protumoral macrophages recruitment and reverting tumor growth promotion, clodronate-laden liposomes (Clod-Lip) or bindarit were administered to melanoma-bearing mice. Macrophage depletion after Clod-Lip treatment induced development of smaller tumors than in untreated mice. Immunohistochemical analysis with an anti-CD31 antibody revealed scarce vascular structures mainly characterized by narrow vascular lights. Pharmacological inhibition of MCP-1 with bindarit also reduced tumor growth and macrophage recruitment, rendering necrotic tumor masses. We suggest that bindarit or Clod-Lip abrogates protumoral-associated macrophages in human melanoma xenografts and could be considered as complementary approaches to antiangiogenic therapy. © 2007 The Society for Investigative Dermatology.

Registro:

Documento: Artículo
Título:Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft
Autor:Gazzaniga, S.; Bravo, A.I.; Guglielmotti, A.; Van Rooijen, N.; Maschi, F.; Vecchi, A.; Mantovani, A.; Mordoh, J.; Wainstok, R.
Filiación:Department Biological Chemistry, Faculty of Sciences, University of Buenos Aires, Buenos Aires, Argentina
Inmunopathology Section, Hospital Eva Perón, Buenos Aires, Argentina
Angelini Farmaceutici ACRAF SpA, S.Palomba-Pomezia, Rome, Italy
Department Molecular Cell Biology, Faculty of Medicine, Amsterdam, Netherlands
National University of La Plata, Bs. As., Argentina
Istituto Clinico Humanitas, Rozzano, Italy
Cancerology Laboratory, Fundación Instituto Leloir, Buenos Aires, Argentina
Department of Biological Chemistry, Faculty of Sciences, University of Buenos Aires, Nuñez (1428), Capital Federal, Argentina
Palabras clave:2 methyl 2 [(1 (phenylmethyl) 1h indazol 3yl)methoxy]propanoic acid; clodronic acid; monocyte chemotactic protein 1; propionic acid derivative; unclassified drug; animal cell; animal experiment; animal model; animal tissue; article; cancer inhibition; controlled study; expression vector; genetic transfection; human; human cell; melanoma; mouse; nonhuman; priority journal; tumor associated leukocyte; tumor growth; tumor necrosis; tumor vascularization; xenograft; Animals; Antigens, CD31; Cell Line, Tumor; Chemokine CCL2; Clodronic Acid; Humans; Indazoles; Liposomes; Macrophages; Male; Melanoma, Experimental; Mice; Neoplasm Transplantation; Neovascularization, Pathologic; Propionic Acids; Transplantation, Heterologous
Año:2007
Volumen:127
Número:8
Página de inicio:2031
Página de fin:2041
DOI: http://dx.doi.org/10.1038/sj.jid.5700827
Título revista:Journal of Investigative Dermatology
Título revista abreviado:J. Invest. Dermatol.
ISSN:0022202X
CODEN:JIDEA
CAS:clodronic acid, 10596-23-3, 22560-50-5; Antigens, CD31; Chemokine CCL2; Clodronic Acid, 10596-23-3; Indazoles; Liposomes; Propionic Acids; bindarit, 130641-38-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022202X_v127_n8_p2031_Gazzaniga

Referencias:

  • Anghelina, M., Krishnam, P., Moldovan, L., Moldovan, N., Monocytes and macrophages form branched-cell columns in matrigel: Implications for a role in neovascularization (2004) Stem Cells Dev, 3, pp. 665-676
  • Anghelina, M., Krishnam, P., Moldovan, L., Moldovan, N., Monocytes/ macrophages cooperate with progenitor cells during neovascularization and tissue repair (2006) Am J Pathol, 168, pp. 529-540
  • Asahara, T., Murohara, T., Sullivan, A., Isolation of putative progenitor endothelial cells for angiogenesis (1997) Science, 275, pp. 964-967
  • Balkwill, F., Charles, K.A., Mantovani, A., Smoldering and polarized inflammation in the initiation and promotion of malignant disease (2005) Cancer Cell, 7, pp. 211-217
  • Bathia, M., Ramnath, R.D., Chevali, L., Guglielmotti, A., Treatment with bindarit, a blocker of MCP-1 synthesis, protects mice against acute pancreatitis (2005) Am J Physiol Gastrointest Liver Physiol, 288, pp. G1259-G1265
  • Brigati, C., Noonan, D.M., Albini, A., Benelli, R., Tumors and inflammatory infiltrates: Friends or foes? (2002) Clin Exp Metastasis, 19, pp. 247-258
  • Colombo, M.P., Mantovani, A., Targeting myelomonocytic cells to revert inflammation-dependent cancer promotion (2005) Cancer Res, 65, pp. 9113-9116
  • Corraliza, I.M., Campo, M.L., Soler, G., Modolell, M., Determination of arginase activity in macrophages: A micromethod (1994) J Immunol Methods, 174, pp. 231-235
  • Coussens, L.M., Werb, Z.J., Inflammation and cancer (2002) Nature, 420, pp. 860-867
  • Desbaillets, I.M., Tada, N., de Tribolet, A.C., Diserens, M.F., Hamou, E.G., Van Meir, E.G., Human astrocytomas and glioblastomas express monocyte chemoattractant protein-1 (MCP-1) in vivo and in vitro (1994) Int J Cancer, 58, pp. 240-247
  • Dong, Q.G., Bernasconi, S., Lostaglio, S., De Calmanovici, R.W., Martin-Padura, I., Breviario, F., A general strategy for isolation of endothelial cells from murine tissues. Characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants (1997) Arterioscler Thromb Vasc Biol, 17, pp. 1599-1604
  • Garlanda, C., Parravicini, C., Sironi, M., De Rossi, M., Wainstok de Calmanovici, R., Carozzi, F., Progressive growth in immunodeficient mice and host cell recruitment by mouse endothelial cells transformed by polyoma middle-sized T antigen: Implications for the pathogenesis of opportunistic vascular tumors (1994) Proc Natl Acad Sci USA, 91, pp. 7291-7295
  • Gazzaniga, S., Bravo, A.I., Goldszmid, S.R., Maschi, F., Martinelli, J., Mordoh, J., Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice (2001) J Invest Dermatol, 116, pp. 664-671
  • Gazzaniga, S., Gonzalez, L., Mantovani, A., Vecchi, A., Wainstok, R., Isolation and molecular characterization of a mouse renal microvascular endothelial cell line (2004) In Vitro Cell Dev Biol Anim, 40, pp. 82-88
  • Guglielmotti, A., D'Onofrio, E., Coletta, L., Milanese, C., Pinza, M., Amelioration of rat adjuvant arthritis by therapeutic treatment with bindarit, an inhibitor of MCP-1and TNF-α production (2002) Inflamm Res, 51, pp. 252-258
  • Knight, L., Conroy, M., Fernando, A., Polak, M., Kurbacher, C., Cree, I.A., Pilot studies of the effect of zoledronic acid (Zometa) on tumor-derived cells ex vivo in the ATP-based tumor chemosensitivity assay (2005) Anti-Cancer Drug, 16, pp. 969-976
  • Koide, N., Nishio, A., Sato, T., Sugiyama, A., Miyagawa, S., Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus (2004) Am J Gastroenterol, 99, pp. 1667-1674
  • Kuroda, T., Kitadai, Y., Tanaka, S., Yang, X., Mukaida, N., Yoshihara, M., Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment (2005) Clin Cancer Res, 11, pp. 7629-7636
  • Lehenkari, P.P., Kellinsalmi, M., Napankangas, J.P., Ylitalo, K.V., Monkkonen, J., Rogers, M.J., Further insight into mechanism of action of clodronate: Inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite (2002) Mol Pharmacol, 61, pp. 1255-1262
  • Luciani, M.G., Stoppacciaro, A., Peri, G., Mantovani, A., Ruco, L.P., The monocyte chemotactic protein 1 (MCP-1) and interleukin 8 (IL-8) in Hodgkin's disease and in solid tumors (1998) J Clin Pathol Mol Pathol, 51, pp. 273-276
  • Mantovani, A., Allavena, P., Sozzani, S., Vecchi, A., Locati, M., Sica, A., Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors (2004) Semin Cancer Bio, 14, pp. 155-160
  • Mantovani, A., Sozzani, S., Locati, M., Allavena, P., Sica, A., Macrophage polarization: Tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes (2002) Trends Immunol, 23, pp. 549-555
  • Mills, C.D., Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: A life or death issue (2001) Crit Rev Immunol, 21, pp. 399-425. , Review
  • Mills, C.D., Kincaid, K., Alt, J., Heilman, M., Hill, A., M-1/M-2 macrophages and the Th1/Th2 paradigm (2000) J Immunol, 164, pp. 6166-6173
  • Negus, R.P., Stamp, G.W., Hadley, J., Balkwill, F.R., Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines (1997) Am J Pathol, 150, pp. 1723-1734
  • Nesbit, M., Schaider, H., Miller, T.H., Herlyn, M., Low-level monocyte chemoattractant Protein - 1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells (2001) J Immunol, 166, pp. 6483-6490
  • Ohta, M., Kitadai, Y., Tanaka, S., Toshihara, M., Yasui, W., Mukaida, N., Monocyte chemoattractant protein-1 expression correlates with macrophages infiltration and tumor vascularity in human gastric carcinomcas (2003) Int J Oncol, 22, pp. 773-778
  • Salcedo, R., Ponce, M., Young, H.A., Ward, J.M., Wasserman, K., Kleinman, H., Human endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression (2000) Blood, 96, pp. 34-40
  • Schmeisser, A., Garlichs, C.D., Zhang, H., Eskafi, S., Graffy, C., Ludwig, J., Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in matrigel under angiogenic conditions (2001) Cardiovasc Res, 49, pp. 671-680
  • Sironi, M., Guglielmotti, A., Polentarutti, N., Fioretti, F., Milanese, C., Romano, M., A small synthetic molecule capable of preferentially inhibiting the production of the CC chemokine monocyte chemotactic protein-1 (1999) Eur Cytokine Netw, 10, pp. 437-442
  • Skovseth, D., Yamanaka, T., Brandtzaeg, P., Butcher, E., Haraldsen, G., Vasculara morphogenesis and differentiation after adoptive transfer of human endothelial cells to immunodeficient mice (2002) Am J Pathol, 160, pp. 1629-1637
  • Spring, H., Schüler, T., Arnold, B., Hämmerling, G., Ganss, R., Chemokines direct endothelial progenitors into tumor neovessels (2005) Proc Natl Acad Sci, 50, pp. 1811-1816
  • Valkovic, T., Lucin, K., Krstulja, M., Dobi-Babic, R., Jonjic, N., Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer (1998) Pathol Res Pract, 194, p. 335
  • van Rooijen, N., Sanders, A., Liposome mediated depletion of macrophages: Mechanism of action, preparation of liposomes and applications (1994) J Immunol Methods, 174, pp. 83-93
  • van Rooijen, N., Sanders, A., van den Berg, T.K., Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine (1996) J Immunol Methods, 193, pp. 93-99
  • Varney, M., Johansson, S., Singh, R., Tumour-associated macrophages infiltration, neovascularization and aggressiveness in malignant melanoma: Role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A (2005) Melanoma Res, 15, pp. 417-425
  • Varney, M.L., Olsen, K.J., Mosley, R.L., Bucana, C.D., Talmadge, J.E., Sing, R.K., Monocyte/macrophage recruitment, activation and differentiation modulate interleukin-8 production; a paracrine role of tumor- associated macrophages in tumor angiogenesis (2002) In vivo, 16, pp. 471-477
  • Yamagishi, S., Abe, R., Inagaki, Y., Nakamura, K., Sugawara, H., Inokuma, D., Minodronate, a newly developed nitrogen-containing biphosphonate, suppress melanoma growth and improves survival in nude mice by blocking vascular endothelial growth factor signaling (2004) Am J Pathol, 165, pp. 1865-1874

Citas:

---------- APA ----------
Gazzaniga, S., Bravo, A.I., Guglielmotti, A., Van Rooijen, N., Maschi, F., Vecchi, A., Mantovani, A.,..., Wainstok, R. (2007) . Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. Journal of Investigative Dermatology, 127(8), 2031-2041.
http://dx.doi.org/10.1038/sj.jid.5700827
---------- CHICAGO ----------
Gazzaniga, S., Bravo, A.I., Guglielmotti, A., Van Rooijen, N., Maschi, F., Vecchi, A., et al. "Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft" . Journal of Investigative Dermatology 127, no. 8 (2007) : 2031-2041.
http://dx.doi.org/10.1038/sj.jid.5700827
---------- MLA ----------
Gazzaniga, S., Bravo, A.I., Guglielmotti, A., Van Rooijen, N., Maschi, F., Vecchi, A., et al. "Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft" . Journal of Investigative Dermatology, vol. 127, no. 8, 2007, pp. 2031-2041.
http://dx.doi.org/10.1038/sj.jid.5700827
---------- VANCOUVER ----------
Gazzaniga, S., Bravo, A.I., Guglielmotti, A., Van Rooijen, N., Maschi, F., Vecchi, A., et al. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J. Invest. Dermatol. 2007;127(8):2031-2041.
http://dx.doi.org/10.1038/sj.jid.5700827