Artículo

Gazzaniga, S.; Bravo, A.; Goldszmid, S.R.; Maschi, F.; Martinelli, J.; Mordoh, J.; Wainstok, R. "Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice" (2001) Journal of Investigative Dermatology. 116(5):664-671
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

There is growing evidence that necrosis, instead of apoptosis, could act as a natural adjuvant, which could activate an immune response. In this work we have investigated if induction of tumor necrosis could trigger the affluence of inflammatory cells at the tumor site, and thus induce an immune response. For this purpose, a liquid N2 spray was applied on human melanoma (IIB-MEL-J cell line) xenografted in nude mice and 24 h later some mice received intratumorally a single 500 U dose of recombinant murine granulocyte macrophage-colony-stimulating factor. 77-100% of the tumor mass underwent necrosis. Congestion, edema, and endothelial cell activation were the first noticeable events. A quick infiltrative response of polymorphonuclear leukocytes around the tumor was detected 24 h after liquid N2 application, peaking at day 3. Massive macrophage recruitment was observed since day 3. An early intratumoral infiltration with inflammatory cells was only detected in the group that received recombinant murine granulocyte macrophagecolony-stimulating factor after necrosis induction by liquid N2. Coexisting DEC 205- and F4/80-positive cells increased in number, and their localization was predominantly peritumoral after necrosis. Antibody response was only detected in the groups with tumor-induced necrosis. Our results suggest that cryosurgery-induced necrosis could be a useful model to analyze the interaction among necrosis, inflammation, and the generation of an immune response.

Registro:

Documento: Artículo
Título:Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice
Autor:Gazzaniga, S.; Bravo, A.; Goldszmid, S.R.; Maschi, F.; Martinelli, J.; Mordoh, J.; Wainstok, R.
Filiación:Hospital Eva Perón, Buenos Aires, Argentina
Instituto de Invest. Bioquimicas, Fundación Campomar, IIB-BA (CONICET), Buenos Aires, Argentina
Dpto. Quimica Biológica, Cd. Universitaria (1428) Nunez, 4 Piso, Pabellón II, Buenos Aires, Argentina
Palabras clave:Cryosurgery; Granulocyte-monocyte colony-stimulating factor; Inflammatory infiltrate; Melanoma; liquid nitrogen; recombinant granulocyte macrophage colony stimulating factor; animal cell; animal model; antibody response; article; controlled study; cryosurgery; cytotoxicity; human; human cell; humoral immunity; immune response; inflammation; inflammatory cell; melanoma; mouse; nonhuman; nude mouse; priority journal; tissue necrosis; tumor growth; xenograft
Año:2001
Volumen:116
Número:5
Página de inicio:664
Página de fin:671
DOI: http://dx.doi.org/10.1046/j.0022-202X.2001.01313.x
Título revista:Journal of Investigative Dermatology
Título revista abreviado:J. Invest. Dermatol.
ISSN:0022202X
CODEN:JIDEA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022202X_v116_n5_p664_Gazzaniga

Referencias:

  • Ballaré, C., Barrio, M., Portela, P., Mordoh, J., Functional properties of FC-2.15, a monoclonal antibody that mediates human complement cytotoxicity against breast cancer cells (1995) Cancer Immunol Immunother, 41, pp. 15-22
  • Bennett, S.R., Carbone, F.R., Karamalis, F., Miller, J.F., Heath, W.R., Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help (1997) J Exp Med, 186, pp. 65-70
  • Burgess, A., Camakaris, J., Metcalf, D., Purification and properties of colony-stimulating factor from mouse lung-conditioned medium (1977) J Biol Chem, 252, pp. 1998-2003
  • Capurro, M., Bover, L., Portela, P., Livingston, P., Mordoh, J., FC-2.15, a monoclonal antibody active against human breast cancer, specifically recognizes Lewisx hapten (1998) Cancer Immunol Immunother, 45, pp. 334-339
  • Clynes, R., Takechi, Y., Moroi, Y., Houghton, A., Ravetch, J.V., Fc receptors are required in passive and active immunity to melanoma (1998) Proc Natl Acad Sci USA, 95, pp. 652-656
  • Cotran, R.S., Pober, J.S., Endothelial activation. Its role in inflammatory and immune reactions (1988) Endothelial Cell Biology, pp. 335-347. , Simionescu N, Simionescu M (eds). New York: Plenum
  • Dong, Q.G., Bemasconi, S., Lostaglio, S., A general strategy for isolation of endothelial cells from murine tissues (1997) Arterioscler Thromb Vasc Biol, 17
  • Dranoff, G., Jaffee, A., Lazenby, P., Vaccination with irradiated tumor cells engineered to secrete human granulocyte-macrophage colony-stimulating factor stimulates potent, specific and long-lasting antitumor immunity (1993) Proc Natl Acad Sci USA, 90, p. 3539
  • Gallucci, S., Lolkema, M., Matzinger, P., Natural adjuvants: Endogenous activator of dendritic cells (1999) Nat Med, 5, pp. 1249-1255
  • Guerra, L., Mordoh, J., Slavtsusky, Y., Larripa, Y., Medrano, E., Characterization of IIB-Mel J. A new and highly heterogeneous human melanoma cell line (1989) Pigment Cell Res, 2, pp. 504-509
  • Hemberg, M., Turunen, J., Muhonen, T., Pyrhönen, S., Tumor infiltrating lymphocytes in patients with metastatic melanoma receiving chemoimmunotherapy (1997) J Immunother, 20, pp. 488-495
  • Hsu, C.K., Whitney, R.A., Hansen, C.T., Thymus-like lymph node in nude mice (1975) Nature, 257, pp. 681-682
  • Huang, A.Y., Golumbek, P., Ahmadzadeh, M., Jaffee, E., Pardoll, D., Levitsky, H., Role of bone marrow-derived cells in presenting MHC class I-restricted rumor antigens (1994) Science, 264, pp. 961-965
  • Kairiyama, C., Slavutsky, I., Larripa, I., Biologic immunocytochemical, and cytogenetic characterization of two new human melanoma cell lines: IIB-MEL-LES and IIB-MEL-IAN (1995) Pigment Cell Res, 8, pp. 121-131
  • Kimber, I., Cumberbatch, M., Dearman, R.J., Bhushan, M., Griffiths, C.E., Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization (2000) Br J Dermatol, 142, pp. 401-412
  • Klein, C., Bueler, H., Mulligan, R.C., Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines (2000) J Exp Med, 191, pp. 1699-1708
  • Kushner, B.H., Cheung, N.K., GM-CSF enhances 3F8 monoclonal antibody-dependent cellular cytotoxicity against human melanoma and neuroblastoma (1989) Blood, 73, pp. 1936-1941
  • Mazur, P., Freezing of living cells: Mechanisms and implications (1984) Am J Physiol, 247, pp. 125-142
  • Mongini, P.K., Paul, W.E., Metcalf, E.S., T cell regulation of immunoglobulin class expression in the antibody response to trinitrophenyl-ficoll. Evidence for T cell enhancement of the immunoglobulin class switch (1982) J Exp Med, 155, pp. 884-902
  • Morvillo, V., Bover, L., Mordoh, J., Identification and characterization of 14 kDa immunosuppressive protein derived from IIB-MEL-L, a human melanoma cell line (1996) Cell Mol Biol, 42, pp. 779-795
  • Nasi, M.L., Lieberman, P., Busam, K.J., Intradermal injections of granulocyte-macrophage colony-stimulating factor (GM-CSF) in patients with metastatic melanoma recruits dendritic cells (1999) Cytokines Cell Mol Ther, 5, pp. 139-144
  • Nooijen, P., Eggermont, A., Schalkwijk, L., Henzen-Logmans, S., De Waal, R., Ruiter, D., Complete response of melanoma-in-transit metastasis after isolated limb perfusion with tumor necrosis factor alpha and melphalan without massive tumor necrosis: A clinical and histopathological study of the delayed-type reaction pattern (1998) Cancer Res, 58, pp. 4880-4887
  • Orpwood, R.D., Biophysical and engineering aspects of cryosurgery (1981) Phys Med Biol, 26, pp. 555-575
  • Randolph, G.J., Inaba, K., Robbiani, D.F., Steinman, R.M., Muller, W.A., Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo (1999) Immunity, 11, pp. 753-761
  • Sauter, B., Alberta, M., Franciscoa, L., Larssona, M., Somersana, S., Bhardwaj, N., Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells (2000) J Exp Med, 191, pp. 423-434
  • Shutt, D.C., Daniels, K.J., Carolan, E.J., Hill, A.C., Soll, D.R., Changes in the motility, morphology and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development (2000) Cell Motil Cytoskeleton, 46, pp. 200-221
  • Si, Z., Hersey, P., Coates, A.S., Clinical responses and lymphoid infiltrates in metastatic melanoma following treatment with intralesional GM-CSF (1996) Melanoma Res, 6, pp. 247-255
  • Soiffer, R., Lynch, M., Mihm, M., Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma (1998) Proc Natl Acad Sci USA, 95, p. 13141
  • Soule, H.D., Vazquez, J., Long, A., Albert, S., Brennan, M., A human cell line from a pleural effusion derived from a breast carcinoma (1973) J Natl Cancer Inst, 51, pp. 1409-1415
  • Springer, T.A., Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm (1994) Cell, 76, pp. 301-314
  • Szabolcs, P., Avigan, D., Gezelter, S., Ciocon, D.H., Moore, M.A., Steinman, R.M., Young, J.W., Dendritic cells and macrophages can mature independently form a human bone marrow-derived, post-colony-forming unit intermediate (1996) Blood, 87, pp. 4520-4530
  • Turk, T., Rees, M., Pietrow, P., Myers, C., Mills, C., Gillenwater, J., Determination of optimal freezing parameters of human prostate cancer in a nude mice model (1999) Prostate, 38, pp. 137-143
  • Wells, A., Malkovsky, M., Heat shock proteins, tumor immunogenicity and antigen presentation: An integrated review (2000) Immunol Today, 21, pp. 129-132
  • Wing, E.J., Magee, D.M., Whiteside, T.L., Kalan, S.S., Shadduck, R.K., Recombinant human granulocyte/macrophage colony-stimulating factor enhances monocyte cytotoxicity and secretion of tumor necrosis factor alpha and interferon in cancer patients (1989) Blood, 73, pp. 643-646
  • Zouboulis, Ch.C., Principles of cutaneous cryosurgery. An update (1999) Dermatology, 198, pp. 111-117

Citas:

---------- APA ----------
Gazzaniga, S., Bravo, A., Goldszmid, S.R., Maschi, F., Martinelli, J., Mordoh, J. & Wainstok, R. (2001) . Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice. Journal of Investigative Dermatology, 116(5), 664-671.
http://dx.doi.org/10.1046/j.0022-202X.2001.01313.x
---------- CHICAGO ----------
Gazzaniga, S., Bravo, A., Goldszmid, S.R., Maschi, F., Martinelli, J., Mordoh, J., et al. "Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice" . Journal of Investigative Dermatology 116, no. 5 (2001) : 664-671.
http://dx.doi.org/10.1046/j.0022-202X.2001.01313.x
---------- MLA ----------
Gazzaniga, S., Bravo, A., Goldszmid, S.R., Maschi, F., Martinelli, J., Mordoh, J., et al. "Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice" . Journal of Investigative Dermatology, vol. 116, no. 5, 2001, pp. 664-671.
http://dx.doi.org/10.1046/j.0022-202X.2001.01313.x
---------- VANCOUVER ----------
Gazzaniga, S., Bravo, A., Goldszmid, S.R., Maschi, F., Martinelli, J., Mordoh, J., et al. Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice. J. Invest. Dermatol. 2001;116(5):664-671.
http://dx.doi.org/10.1046/j.0022-202X.2001.01313.x