Pontes, G.; Pereira, M.H.; Barrozo, R.B."Salt controls feeding decisions in a blood-sucking insect" (2017) Journal of Insect Physiology. 98:93-100
El editor solo permite la decarga de la versión post-print. Si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Salts are necessary for maintaining homeostatic conditions within the body of all living organisms. Like with all essential nutrients, deficient or excessive ingestion of salts can result in adverse health effects. The taste system is a primary sensory modality that helps animals to make adequate feeding decisions in terms of salt consumption. In this work we show that sodium and potassium chloride salts modulate the feeding behavior of Rhodnius prolixus in a concentration-dependent manner. Feeding is only triggered by an optimal concentration of any of these salts (0.1–0.15 M) and in presence of the phagostimulant ATP. Conversely, feeding solutions that do not contain salts or have a high-salt concentration (>0.3 M) are not ingested by insects. Notably, we show that feeding decisions of insects cannot be explained as an osmotic effect, because they still feed over hyperosmotic solutions bearing the optimal salt concentration. Insects perceive optimal-salt, no-salt and high-salt solutions as different gustatory information, as revealed the electromyogram recordings of the cibarial pump. Moreover, because insects do a continuous gustatory monitoring of the incoming food during feeding, sudden changes beyond the optimal sodium concentration decrease and even inhibit feeding. The administration of amiloride, a sodium channel blocker, noticeably reduces the ingestion of the optimal sodium solution but not of the optimal potassium solution. Salt detection seems to occur at least through two salt receptors, one amiloride-sensitive and another amiloride-insensitive. Our results confirm the importance of the gustatory system in R. prolixus, showing the relevant role that salts play on their feeding decisions. © 2016 Elsevier Ltd


Documento: Artículo
Título:Salt controls feeding decisions in a blood-sucking insect
Autor:Pontes, G.; Pereira, M.H.; Barrozo, R.B.
Filiación:Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, IBBEA, CONICET-UBA, DBBE, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, BA, Argentina
Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
Palabras clave:Amiloride; Electromyogram; Feeding; Rhodnius prolixus; Salt; Taste; body condition; concentration (composition); feeding behavior; homeostasis; ingestion rate; insect; optimization; salt; sensory system; sodium chloride; taste; Animalia; Hexapoda; Rhodnius prolixus; amiloride; epithelial sodium channel blocking agent; sodium chloride; animal; drug effects; feeding behavior; growth, development and aging; nymph; physiology; Rhodnius; taste; Amiloride; Animals; Epithelial Sodium Channel Blockers; Feeding Behavior; Nymph; Rhodnius; Sodium Chloride; Taste Perception
Página de inicio:93
Página de fin:100
Título revista:Journal of Insect Physiology
Título revista abreviado:J. Insect Physiol.
CAS:amiloride, 2016-88-8, 2609-46-3; sodium chloride, 7647-14-5; Amiloride; Epithelial Sodium Channel Blockers; Sodium Chloride


  • Alves, G., Sallé, J., Chaudy, S., Dupas, S., Manière, G., High-NaCl Perception in Drosophila melanogaster (2014) J. Neurosci., 34, pp. 10884-10891
  • Araujo, R., Gontijo, N., Guarneri, A., Gontijo, A., Soares, A., Pereira, M., Electromyogram of the cibarial pump and the feeding process in hematophagous Hemiptera (2011) Adv. Appl. Electromyography, 8, pp. 137-158. , INTECH. ISBN 978-953-307-382-8
  • Barrozo, R.B., Minoli, S.A., Lazzari, C.R., Circadian rhythm of behavioural responsiveness to carbon dioxide in the blood-sucking bug Triatoma infestans (Heteroptera: Reduviidae) (2004) J. Insect Physiol., 50, pp. 249-254
  • Bennet-Clark, H.C., Negative pressures produced in the pharyngeal pump of the blood-sucking bug, Rhodnius prolixus (1963) J. Exp. Biol., 40, pp. 223-229
  • Bernard, J., Etude électrophysiologique de récepteurs impliqués dans l'orientation vers l'hôte et dans l'acte hémotophage chez un Hémiptère: Triatoma infestans (1974), Doctoral thesis, Université de Rennes, France; Bodin, A., Barrozo, R., Couton, L., Lazzari, C., Temporal modulation and adaptive control of the behavioural response to odours in Rhodnius prolixus (2008) J. Insect Physiol., 54, pp. 1343-1348
  • Brand, J.G., Teeter, J.H., Silver, W.L., Inhibition by amiloride of chorda tympani responses evoked by monovalent salts (1985) Brain Res., 334, pp. 207-214
  • Cameron, P., Hiroi, M., Ngai, J., Scott, K., The molecular basis for water taste in Drosophila (2010) Nature, 465, pp. 91-95
  • Chandrashekar, J., Kuhn, C., Oka, Y., Yarmolinsky, D.A., Hummler, E., Ryba, N.J.P., The cells and peripheral representation of sodium taste in mice (2010) Nature, 464, pp. 297-301
  • Chapman, R.F., Chemoreception: The significance of receptor neurons (1982) Adv. In Insect Phys., 16, pp. 247-356
  • Chen, Z., Wang, Q., Wang, Z., The amiloride-sensitive epithelial Na+ channel PPK28 is essential for drosophila gustatory water reception (2010) J. Neurosci., 30, pp. 6247-6252
  • Contreras, R., Lundy, R.J., Gustatory neuron types in the periphery: a functional perspective (2000) Physiol. Behav., 69, pp. 41-52
  • Friend, W., The gorging response in Rhodnius prolixus Stahl (1965) Can. J. Zool., 43, pp. 125-132
  • Friend, W.G., Smith, J.J., Factors affecting feeding by bloodsucking insects (1977) Annu. Rev. Entomol., 22, pp. 309-331
  • Friend, W., Smith, J., Feeding in Rhodnius prolixus: mouthpart activity and salivation, and their correlation wiht changes of electrical resistance (1971) J. Insect Physiol., 17, pp. 233-243
  • Friend, W., Smith, J., Feeding in Rhodnius prolixus: potencies of nucleoside phosphates in initiating gorging (1971) J. Insect Physiol., 17, pp. 1315-1320
  • Guerenstein, P.G., Nuñez, J., Feeding response of the haematophagous bugs Rhodnius prolixus and Triatoma infestans to saline solutions : a comparative study (1994) J. Insect Physiol., 40, pp. 747-752
  • Haynes, W.M., CRC Handbook of Chemistry and Physics (2012), 93rd edition, Chemical Rubber Company; Hettinger, T.P., Frank, M.E., Specificity of amiloride inhibition of hamster taste responses (1990) Brain Res., 513, pp. 24-34
  • Inoshita, T., Tanimura, T., Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila (2006) Proc. Natl. Acad. Sci., 103, pp. 1094-1099
  • Jefferies, D., Labrocibarial sensilla in the female of the black fly Simulium damnosum s.l. (Diptera: Simuliidae) (1987) Can. J. Zool., 65, pp. 441-444
  • Kellenberger, S., Schild, L., Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure (2002) Physiol. Rev., 82, pp. 735-767
  • Kraus, C., Versuch einer Morphologischen und Neurophysiologischen Analyse des Stechaktes von Rhodnius prolixus Stal (1957) Acta Trop., 14, pp. 34-87
  • Lee, R., Structure and function of the fascicular stylets, an the labral and cibarial sense organs of males and females of Aedes aegypti (L) (Diptera, Culicidae) (1974) Quaest. Entomol., 10, pp. 187-215
  • Liman, E.R.E., Zhang, Y.V.Y., Montell, C., Peripheral coding of taste (2014) Neuron, 81, pp. 984-1000
  • Liu, L., Leonard, S., Motto, D.G., Feller, M.A., Price, M.P., Johnson, W.A., Contribution of Drosophila DEG/ENaC genes to salt taste (2003) Neuron, 39, pp. 133-146
  • McIver, S., Siemicki, R., Innervation of cibarial sensilla of Aedes aegyti (L) (Diptera: Culicidae) (1981) Int. J. Insect Morphol Embryol., 10, pp. 335-339
  • Mesquita, R.D., Vionette-, R.J., Lowenberger, C., Rivera-pomar, R., Monteiro, A., Minx, P., Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection (2016) Proc. Natl. Acad. Sci., 112, pp. 14936-14941
  • Oka, Y., Butnaru, M., Buchholtz, L.V., High salt recruits aversive taste pathways (2013) Nature, 494, pp. 472-475
  • Pontes, G., Minoli, S., Ortega Insaurralde, I., de Brito Sanchez, M.G., Barrozo, R.B., Bitter stimuli modulate the feeding decision of a blood-sucking insect via two sensory inputs (2014) J. Exp. Biol., 217, pp. 3708-3717
  • Rice, M., Cibarial sense organs of the blowfly, Calliphora erythrocephala (Meigen) (Diptera: Calliphoridae) (1973) Int. J. Insect Morphol. Embryol., 2, pp. 109-116
  • Roper, S.D., The taste of table salt (2015) Pflugers Arch. Eur. J. Physiol., 467, pp. 457-463
  • Smith, J., Friend, W., Feeding in Rhodnius prolixus: responses to artificial diets as revealed by changes in electrical resistance (1970) J. Insect Physiol., 16, pp. 1709-1720
  • Sokal, R.R., Rohlf, F.J., Biometry: The Principles and Practices of Statistics in Biological Research (1995), third ed. W.H Freeman and Company; Stoker, S.H., General, Organic and Biological Chemistry, seventh ed (2016), Cengage Learning. ISBN10: 1–285-85391-1; Zhang, Y.V., Ni, J., Montell, C., The molecular basis for attractive salt-taste coding in Drosophila (2013) Science, 340, pp. 1334-1338
  • Wigglesworth, V., The physiology of excretion in a blood-sucking insect, Rhodnius prolixus (Hemiptera, Reduviidae). I. Composition of the urine (1931) J Exp. Biol., 8, pp. 428-442


---------- APA ----------
Pontes, G., Pereira, M.H. & Barrozo, R.B. (2017) . Salt controls feeding decisions in a blood-sucking insect. Journal of Insect Physiology, 98, 93-100.
---------- CHICAGO ----------
Pontes, G., Pereira, M.H., Barrozo, R.B. "Salt controls feeding decisions in a blood-sucking insect" . Journal of Insect Physiology 98 (2017) : 93-100.
---------- MLA ----------
Pontes, G., Pereira, M.H., Barrozo, R.B. "Salt controls feeding decisions in a blood-sucking insect" . Journal of Insect Physiology, vol. 98, 2017, pp. 93-100.
---------- VANCOUVER ----------
Pontes, G., Pereira, M.H., Barrozo, R.B. Salt controls feeding decisions in a blood-sucking insect. J. Insect Physiol. 2017;98:93-100.