Schilman, P.E."Metabolism and gas exchange patterns in Rhodnius prolixus" (2017) Journal of Insect Physiology. 97:38-44
El editor solo permite la decarga de la versión post-print. Si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Insect's metabolic rate and patterns of gas-exchange varies according to different factors such as: species, activity, mass, and temperature among others. One particular striking pattern of gas-exchange in insects is discontinuous gas-exchange cycles, for which many different hypotheses regarding their evolution have been stated. This article does not pretend to be an extensive review on the subject, rather to focus on the work performed on the haematophagous bug Rhodnius prolixus, a model organism used from the mid XX century until present days, with the great influence of Wigglesworth and his students/collaborator's work. I have no doubt that the renovated field of insect gas-exchange has a bright future and will advance at large gaits thank to the help of this model organism, R. prolixus, whose entire genome has recently being unraveled. © 2016 Elsevier Ltd


Documento: Artículo
Título:Metabolism and gas exchange patterns in Rhodnius prolixus
Autor:Schilman, P.E.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
Instituto de Biodiversidad y Biología Experimental y Aplicada, CONICET-UBA, Buenos Aires, Argentina
Palabras clave:Gas-exchange patterns; Respirometry; Temperature; Wigglesworth; bibliography; gas exchange; genome; insect; metabolism; student; temperature; Hexapoda; Rhodnius prolixus; animal; breathing; energy metabolism; physiology; Rhodnius; Animals; Energy Metabolism; Respiration; Rhodnius
Página de inicio:38
Página de fin:44
Título revista:Journal of Insect Physiology
Título revista abreviado:J. Insect Physiol.


  • Bartholomew, G.A., Vleck, D., Vleck, C.M., Instantaneous measurements of oxygen consumption during pre-flight warm-up and post-flight cooling in sphingid and saturniid moths (1981) J. Exp. Biol., 90, pp. 17-32
  • Bradley, T.J., The discontinuous gas exchange cycle in insects may serve to reduce oxygen supply to the tissues (2000) Am. Zool., 40, p. 952
  • Bradley, T.J., Brethorst, L., Robinson, S., Hetz, S., Changes in the rate of CO2 release following feeding in the insect Rhodnius prolixus (2003) Physiol. Biochem. Zool., 76, pp. 302-309
  • Buck, J., Keister, M., Cyclic CO2 release in diapausing Agapema pupae (1955) Biol. Bull., 114, pp. 118-140
  • Buck, J., Keister, M., Specht, H., Discontinuous respiration in diapausing Agapema pupae (1953) Anat. Rec., 117, p. 541
  • Casey, T.M., Oxygen consumption during flight (1989) Insect Flight, , G.J. Goldsworthy C.H. Wheeler CRC Press Boca Raton, Florida
  • Casey, T.M., Ellington, C.P., Energetics of insect flight (1989) Energy Transformations in Cells and Animals, pp. 200-212. , W. Wieser E. Gnaiger George Thieme Verglag Stuttgart
  • Chown, S.L., Holter, P., Discontinuous gas exchange cycles in Aphodius fossor (Scarabaeidae): a test of hypotheses concerning origins and mechanisms (2000) J. Exp. Biol., 203, pp. 397-403
  • Chown, S.L., Gibbs, A.G., Hetz, S.K., Klok, C.J., Lighton, J.R.B., Marais, E., Discontinuous gas exchange in insects: a clarification of hypotheses and approaches (2006) Physiol. Biochem. Zool., 79, pp. 333-343
  • Contreras, H.L., Bradley, T.J., Metabolic rate controls respiratory pattern in insects (2009) J. Exp. Biol., 212, pp. 424-428
  • Contreras, H.L., Bradley, T.J., Transitions in insect respiratory patterns are controlled by changes in metabolic rate (2010) J. Insect Physiol., 56, pp. 522-528
  • Contreras, H.L., Heinrich, E.C., Bradley, T.J., Hypotheses regarding the discontinuous gas exchange cycle (DGC) of insects (2014) Curr. Opin. Insect Sci., 4, pp. 48-53
  • Davey, K.G., Oxygen consumption and egg production in the blood feeding insect Rhodnius prolixus (1993) Invertebrate Reprod. Dev., 23, pp. 45-49
  • de la Vega, G., Medone, P., Ceccarelli, S., Rabinovich, J., Schilman, P.E., Geographical distribution, climatic variability and thermo-tolerance of Chagas disease vectors (2015) Ecography, 38, pp. 851-860
  • Ellington, C.P., Machin, K.E., Casey, T.M., Oxygen consumption of bumblebees in free forward flight – no power curve (1990) Nature, 347, pp. 472-473
  • Förster, T., Hetz, S.K., Spiracle activity in moth pupae: the role of oxygen and carbon dioxide revisited (2009) J. Insect Physiol., 56, pp. 492-501
  • Grieshaber, B.J., Terblanche, J.S., Computational model of insect discontinuous gas exchange: a two-sensor, control systems approach (2015) J. Theor. Biol., 374, pp. 138-151
  • Gibbs, A.G., Johnson, R.A., The role of discontinuous gas exchange in insects: the chthonic hypothesis does not hold water (2004) J. Exp. Biol., 207, pp. 3477-3482
  • Harrison, J.F., Camazine, S., Marden, J.H., Kirkon, S.D., Rozo, A., Yang, X., Mite not make it home: tracheal mites reduce the safety margin for oxygen delivery of flying honeybees (2001) J. Exp. Biol., 204, pp. 805-814
  • Harrison, J.F., Fewell, J.H., Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera (2002) Comp. Biochem. Physiol. A, 133, pp. 323-333
  • Harrison, J.F., Wasserthal, L.T., Chapman, R.F., Gaseous exchange (2013) The Insects: Structure and Function, pp. 501-545. , S.J. Simpson A.E. Douglas fifth ed. Cambridge University Press New York
  • Heinrich, E., Bradley, T.J., Temperature-dependent variation in gas exchange patterns and spiracular control in Rhodnius prolixus (2014) J. Exp. Biol., 217, pp. 2752-2760
  • Hetz, S.K., Bradley, T.J., Insects breathe discontinuously to avoid oxygen toxicity (2005) Nature, 433, pp. 516-519
  • Hetz, S.K., Wasserthal, L.T., Hermann, S., Kaden, H., Oelßner, W., Direct oxygen measurements in the tracheal system of lepidopterous pupae using miniaturized amperometric sensors (1993) Bioelectrochem. Bioenergy, 33, pp. 165-170
  • King, A.M., MacRae, T.H., Insect heat shock proteins during stress and diapause (2015) Annu. Rev. Entomol., 60, pp. 59-75
  • Lahondère, C., Lazzari, C.R., Mosquitoes cool down during blood feeding to avoid overheating (2012) Curr. Biol., 22, pp. 40-45
  • Leis, M., Pereira, M.H., Casas, J., Menu, F., Lazzari, C.R., Haematophagy is costly: respiratory patterns and metabolism during feeding in Rhodnius prolixus (2016) J. Exp. Biol.
  • Levy, R.I., Schneiderman, H.A., Discontinuous respiration in insects – III. The effect of temperature and ambient oxygen tension on the gaseous composition of the tracheal system of silkworm pupae (1966) J. Insect Physiol., 12, pp. 105-121
  • Levy, R.I., Schneiderman, H.A., Discontinuous respiration in insects – IV. Changes in intra-tracheal pressure during the respiratory cycle of silkworm pupae (1966) J. Insect Physiol., 12, pp. 465-492
  • Lighton, J.R.B., Discontinuous ventilation in terrestrial insects (1994) Physiol. Zool., 67 (1), pp. 142-162
  • Lighton, J.R.B., Discontinuous gas exchange in insects (1996) Annu. Rev. Entomol., 41, pp. 309-324
  • Lighton, J.R.B., Hot hypoxic flies: whole-organism interactions between hypoxic and thermal stressors in Drosophila melanogaster (2007) J. Therm. Biol., 32 (3), pp. 134-143
  • Lighton, J.R.B., Measuring Metabolic Rates: A Manual for Scientists (2008), Oxford University Press Oxford; Lighton, J.R.B., Berrigan, D., Questioning paradigms: caste-specific ventilation in harvester ants, Messor pergandei and M. julianus (Hymenoptera: Formicidae) (1995) J. Exp. Biol., 198, pp. 521-530
  • Lighton, J.R.B., Brownell, P., Joos, B., Turner, R., Low metabolic rate in scorpions: implications for population biomass and cannibalism (2001) J. Exp. Biol., 204 (3), pp. 607-613
  • Lighton, J.R.B., Fielden, L.J., Mass scaling of standard metabolism in ticks: a valid case of low metabolic rates in sit-and-wait strategists (1995) Physiol. Zool., 68 (1), pp. 43-62
  • Lighton, J.R.B., Hasley, L.G., Flow-through respirometry applied to chamber systems: pros and cons, hints and tips (2011) Comp. Biochem. Physiol. A., 158, pp. 265-275
  • Lighton, J.R.B., Schilman, P.E., Oxygen reperfusion damage in an insect (2007) PLoS One, 2, p. e1267
  • Lighton, J.R.B., Schilman, P.E., Holway, D.A., The hyperoxic switch: assessing respiratory water loss rates in tracheate arthropods with continuous gas exchange (2004) J. Exp. Biol., 207, pp. 4463-4471
  • Locke, M., The formation of tracheae and tracheoles in Rhodnius prolixus (1958) Q. J. Microsc. Sci., 99, pp. 26-46
  • Locke, M., The coordination of growth in the tracheal system of insects (1958) Q. J. Microsc. Sci., 99, pp. 373-391
  • Matthews, P.G.D., White, C.R., Discontinuous gas exchange: is it all in their heads? (2011) Am. Nat., 177, pp. 130-134
  • Matthews, P.G.D., White, C.R., Reversible brain inactivation induces discontinuous gas exchange in cockroaches (2013) J. Exp. Biol., 216, pp. 2012-2016
  • Mesquita, R.D., Vionette-Amaral, R.J., Lowenberger, C., Rivera-Pomar, R., Monteiro, P., Minx, F.A., Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to haematophagy and parasite infection (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 14936-14941
  • Miller, P.L., Respiration: aerial gas transport (1974) Physiology of Insecta, 4, pp. 345-402. , M. Rockstein second ed. Academic Press New York
  • Okasha, A.Y.K., Effects of high temperature in Rhodnius prolixus (Stål.) (1964) Nature, 204, pp. 1221-1222
  • Okasha, A.Y.K., Effects of sub-lethal high temperature on an insect, Rhodnius prolixus (Stål.) – I. Induction of delayed moulting and defects (1968) J. Exp. Biol., 48, pp. 455-463
  • Okasha, A.Y.K., Effects of sub-lethal high temperature on an insect, Rhodnius prolixus (Stål.). II. Mechanism of cessation and delay of moulting (1968) J. Exp. Biol., 48, pp. 465-473
  • Okasha, A.Y.K., Effects of sub-lethal high temperature on an insect, Rhodnius prolixus (Stål.). III. Metabolic changes and their bearing on the cessation and delay of moulting (1968) J. Exp. Biol., 48, pp. 475-486
  • Okasha, A.Y.K., Changes in the respiratory metabolism of Rhodnius prolixus as induced by temperature (1968) J. Insect Physiol., 14, pp. 1621-1634
  • Okasha, A.Y.K., Injury metabolism in an insect, Rhodnius prolixus (1970) J. Insect Physiol., 16, pp. 1579-1585
  • Pendar, H., Socha, J.J., Estimation of instantaneous gas exchange in flow-through respirometry systems: a modern revision of Bartholomew's Z-transform method (2015) PLoS One, 10 (10), p. e0139508
  • Punt, A., The respiration of insects (1950) Physiol. Comp. Oecol., 2, pp. 59-74
  • Quinlan, M.C., Gibbs, A.G., Discontinuous gas exchange in insects (2006) Respir. Physiol. Neurobiol., 154, pp. 18-29
  • Randall, D., Burggren, W.W., French, K., Eckert, R., Eckert Animal Physiology (2002), p. 120. , W.H. Freeman; Roces, F., Lighton, J.R.B., Larger bites of leaf-cutting ants (1995) Nature, 373, pp. 392-393
  • Rolandi, C., Schilman, P.E., Linking global warming, metabolic rate of hematophagous vectors, and the transmission of infectious diseases (2012) Front. Physiol., 3, p. 75
  • Rolandi, C., Iglesias, M.S., Schilman, P.E., Metabolism and water loss rate of the haematophagous insect Rhodnius prolixus: effect of starvation and temperature (2014) J. Exp. Biol., 217, pp. 4414-4422
  • Schilman, P.E., La respiración de los artrópodos con tráqueas (2007) Ciencia Hoy, 17 (100), pp. 22-26
  • Schilman, P.E., Lighton, J.R.B., Holway, D.A., Respiratory and cuticular water loss in insects with continuous gas exchange: comparison across five ant species (2005) J. Insect Physiol., 51, pp. 1295-1305
  • Schilman, P.E., Kaiser, A., Lighton, J.R.B., Breathe softly, beetle: continuous gas exchange, water loss and the role of the subelytral space in the tenebrionid beetle, Eleodes obscura (2008) J. Insect Physiol., 54, pp. 192-203
  • Schilman, P.E., Waters, J.S., Harrison, J.F., Lighton, J.R.B., Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster (2011) J. Exp. Biol., 214, pp. 1271-1275
  • Slama, K., Sobotnik, J., Hanus, R., Respiratory concerts reveals by scanning microrespirography in a termite Prohinotermes simplex (Isoptera: Rhinotermitidae) (2007) J. Insect Physiol., 53, pp. 295-311
  • Socha, J.J., Forster, T.D., Greenlee, K.J., Issues of convection in insect respiration: Insights from synchrotron X-ray imaging and beyond (2010) Respir. Physiol. Neurobiol., 173S, pp. S65-S73
  • Speakman, J.R., Doubly Labelled Water: Theory and Practice (1997), Chapman & Hall London; Waters, J.S., Harrison, J.E., Insect metabolic rates (2012) Metabolic Ecology: A Scaling Approach, pp. 198-211. , R.M. Sibly J.H. Brown A. Kodric-Brown John Wiley & Son Ltd (Chapter 16)
  • Wigglesworth, V.B., The regulation of respiration in the flea, Xenopsylla cheopis, Roths. (Pulicidae) (1935) Proc. R. Soc. Lond. Ser. B, 118, pp. 397-419
  • Wigglesworth, V.B., Wound healing in an insect (Rhodnius prolixus Hemiptera) (1937) J. Exp. Biol., 14, pp. 364-381
  • Wigglesworth, V.B., Growth and regeneration in the tracheal system of an insect, Rhodnius prolixus (Hemiptera) (1954) Q. J. Microsc. Sci., 95, pp. 115-137
  • Wigglesworth, V.B., The role of the epidermal cells in the ‘migration’ of tracheoles in Rhodnius prolixus (Hemiptera) (1959) J. Exp. Biol., 36, pp. 632-640
  • Wigglesworth, V.B., The Principles of Insect Physiology (1972), Chapman & Hall London; Zwicky, K., Wigglesworth, V.B., The course of oxygen consumption during the moulting cycle of Rhodnius prolixus Stål (Hemiptera) (1956) Proc. R. Entomol. Soc. Lond. Ser. A Gen. Entomol., 31, pp. 153-160


---------- APA ----------
(2017) . Metabolism and gas exchange patterns in Rhodnius prolixus. Journal of Insect Physiology, 97, 38-44.
---------- CHICAGO ----------
Schilman, P.E. "Metabolism and gas exchange patterns in Rhodnius prolixus" . Journal of Insect Physiology 97 (2017) : 38-44.
---------- MLA ----------
Schilman, P.E. "Metabolism and gas exchange patterns in Rhodnius prolixus" . Journal of Insect Physiology, vol. 97, 2017, pp. 38-44.
---------- VANCOUVER ----------
Schilman, P.E. Metabolism and gas exchange patterns in Rhodnius prolixus. J. Insect Physiol. 2017;97:38-44.