Artículo

Zermoglio, P.F.; Latorre-Estivalis, J.M.; Crespo, J.E.; Lorenzo, M.G.; Lazzari, C.R. "Thermosensation and the TRPV channel in Rhodnius prolixus" (2015) Journal of Insect Physiology. 81:145-156
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The thermal sense of triatomine bugs, vectors of Chagas disease, is unique among insects. Not only do these bugs exhibit the highest sensitivity to heat known in any animal up to date, but they can also perceive the infrared radiation emitted by the body of their warm-blooded hosts. The sensory basis of this capacity has just started to be unravelled. To shed additional light on our understanding of thermosensation, we initiated an analysis of the genetic basis of the thermal sense in Rhodnius prolixus. We tested the hypothesis that a TRPV (transient receptor potential vanilloid) channel receptor is involved in the evaluation of heat in this species. Two different approaches were adopted. Initially, we analysed the expression of a TRPV candidate for this function, i.e., RproIav, in different tissues. Subsequently, we tested the effects of capsaicin and capsazepine, two molecules known to interact with mammal TRPV1, using three different behavioural protocols for evaluating thermal responses: (1) proboscis extension response (PER), (2) thermopreference in a temperature gradient and (3) spatial learning in an operant conditioning context. Bioinformatic analyses confirmed that the characteristic features typical of the TRPV channel subfamily are found in the RproIav protein sequence. Molecular analysis showed that RproIav is expressed in R. prolixus, not only in the antennae, but also in other body structures bearing sensory organs. Behavioural experiments consistently revealed that capsaicin treated insects are less responsive to heat stimuli and prefer lower temperatures than non-treated insects, and that they fail to orient in space. Conversely, capsazepine induces the opposite behaviours. The latter data suggest that triatomine thermoreception is based on the activation of a TRP channel, with a similar mechanism to that described for mammal TRPV1. The expression of RproIav in diverse sensory structures suggests that this receptor channel is potentially involved in bug thermoreception. This constitutes solid evidence that thermosensation could be based on the activation of TRP receptors that are expressed in different tissues in R. prolixus. Whether RproIav channel is a potential target for the compounds tested and whether it mediates the observed effects on behaviour still deserves to be confirmed by further research. © 2015 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Thermosensation and the TRPV channel in Rhodnius prolixus
Autor:Zermoglio, P.F.; Latorre-Estivalis, J.M.; Crespo, J.E.; Lorenzo, M.G.; Lazzari, C.R.
Filiación:Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université François Rabelais de Tours, France
Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Brazil
Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Palabras clave:Capsaicin; Capsazepine; Chagas disease vectors; Thermal sense; TRPV; data set; disease vector; heat balance; infrared radiation; insect; low temperature; organic compound; parasitic disease; physiological response; protein; temperature effect; Animalia; Hexapoda; Mammalia; Rhodnius prolixus; capsaicin; capsazepine; vanilloid receptor; amino acid sequence; analogs and derivatives; animal; animal behavior; Chagas disease; disease carrier; drug effects; feeding behavior; gene expression; genetics; heat; instrumental conditioning; metabolism; molecular genetics; physiology; Rhodnius; spatial learning; temperature; temperature sense; Amino Acid Sequence; Animals; Behavior, Animal; Capsaicin; Chagas Disease; Conditioning, Operant; Feeding Behavior; Gene Expression; Hot Temperature; Insect Vectors; Molecular Sequence Data; Rhodnius; Spatial Learning; Temperature; Thermosensing; TRPV Cation Channels
Año:2015
Volumen:81
Página de inicio:145
Página de fin:156
DOI: http://dx.doi.org/10.1016/j.jinsphys.2015.07.014
Título revista:Journal of Insect Physiology
Título revista abreviado:J. Insect Physiol.
ISSN:00221910
CODEN:JIPHA
CAS:capsaicin, 404-86-4; capsazepine, 138977-28-3; Capsaicin; capsazepine; TRPV Cation Channels
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221910_v81_n_p145_Zermoglio

Referencias:

  • Abascal, F., Zardoya, R., Posada, D., ProtTest: selection of best-fit models of protein evolution (2005) Bioinformatics, 21, pp. 2104-2105
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J. Mol. Biol., 215, pp. 403-410
  • Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Magrane, M., The universal protein resource (UniProt) (2005) Nucleic Acids Res., 33, pp. D154-D159
  • Barbagallo, B., Garrity, P.A., Temperature sensation in Drosophila (2015) Curr. Opin. Neurobiol., 34, pp. 8-13
  • Benham, C.D., Gunthorpe, M.J., Davis, J.B., TRPV channels as temperature sensors (2003) Cell Calcium, 33, pp. 479-487
  • Bernsel, A., Viklund, H., Hennerdal, A., Elofsson, A., TOPCONS: consensus prediction of membrane protein topology (2009) Nucl. Acids Res., 37, pp. W465-468
  • Bevan, S., Hothi, S., Hughes, G., James, I.F., Rang, H.P., Shah, K., Walpole, C.S.J., Yeats, J.C., Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin (1992) Br. J. Pharmacol., 107, pp. 544-552
  • Bodin, A., Vinauger, C., Lazzari, C.R., Behavioural and physiological state dependency of host seeking in the blood-sucking insect Rhodnius prolixus (2009) J. Exp. Biol., 212, pp. 2386-2393
  • Bodin, A., Vinauger, C., Lazzari, C.R., State-dependency of host-seeking in Rhodnius prolixus: the post-ecdysis time (2009) J. Insect Physiol., 55, pp. 574-579
  • Caterina, M.J., Transient receptor potential ion channels as participants in thermosensation and thermoregulation (2007) Am. J. Physiol. Regul. Integr. Comp. Physiol., 292, pp. R64-R76
  • Damann, N., Voets, T., Nilius, B., TRPs in our senses (2008) Curr. Biol., 18, pp. R880-R889
  • Dhaka, A., Viswanath, V., Patapoutian, A., Trp ion channels and temperature sensation (2006) Annu. Rev. Neurosci., 29, pp. 135-161
  • Dhaka, A., Murray, A.N., Mathur, J., Earley, T.J., Petrus, M.J., Patapoutian, A., TRPM8 is required for cold sensation in mice (2007) Neuron, 54, pp. 371-378
  • Erler, I., Hirnet, D., Wissenbach, U., Flockerzi, V., Niemeyer, B.A., Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat (2004) J. Biol. Chem., 279, pp. 34456-34463
  • Ferreira, R.A., Lazzari, C.R., Lorenzo, M.G., Pereira, M.H., Do haematophagous bugs assess skin surface temperature to detect blood vessels? (2007) PLoS ONE, 2, p. e932
  • Fowler, M.A., Montell, C., Drosophila TRP channels and animal behavior (2013) Life Sci., 92, pp. 394-403
  • Fresquet, N., Lazzari, C.R., Response to heat in Rhodnius prolixus: the role of thermal background (2011) J. Insect Physiol., 57, pp. 1446-1449
  • Gonzalez-Reyes, L.E., Ladas, T.P., Chiang, C.C., Durand, D.M., TRPV1 antagonist capsazepine suppresses 4-AP-induced epileptiform activity in vitro and electrographic seizures in vivo (2013) Exp. Neurol., 250, pp. 321-332
  • Guarneri, A.A., Lazzari, C.R., Xavier, A.A.P., Diotaiuti, L., Lorenzo, M.G., The effect of temperature on the behaviour and development ofTriatoma brasiliensis (2003) Physiol. Entomol., 28, pp. 185-191
  • Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S.R., Ghezzi, A., Jegla, T.J., Garrity, P.A., An internal thermal sensor controlling temperature preference in Drosophila (2008) Nature, 454, pp. 217-220
  • Huang, C.L., The transient receptor potential superfamily of ion channels (2004) J. Am. Soc. Nephrol., 15, pp. 1690-1699
  • Hwang, R.Y., Stearns, N.A., Tracey, W.D., The ankyrin repeat domain of the TRPA protein painless is important for thermal nociception but not mechanical nociception (2012) PLoS ONE, 7 (1), p. e30090
  • Insausti, T.C., Lazzari, C.R., Campanucci, V.A., Neurobiology of behaviour. A: morphology of the nervous system and sense organs (1999) Atlas of Chagas' Disease Vectors in America, 3, pp. 1017-1051. , Editora Fiocruz, Rio de Janeiro, Carcavallo (Ed.)
  • Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Nuka, G., InterProScan 5: genome-scale protein function classification (2014) Bioinformatics, 30, pp. 1236-1240
  • Jordt, S.E., McKemy, D.D., Julius, D., Lessons from peppers and peppermint: the molecular logic of thermosensation (2003) Curr. Opin. Neurobiol., 13, pp. 487-492
  • Khan-Kirby, A.H., Bargmann, C.I., TRP Channels in C. elegans (2006) Annu. Rev. Physiol., 68, pp. 719-736
  • Kim, J., Chung, Y.D., Park, D.Y., Choi, S., Shin, D.W., Soh, H., Lee, H.W., Kim, C., A TRPV family ion channel required for hearing in Drosophila (2003) Nature, 424, pp. 81-84
  • Kim, H.G., Margolies, D., Park, Y., The roles of thermal transient receptor potential channels in thermotactic behavior and in thermal acclimation in the red flour beetle (2015) Tribolium castaneum. J. Insect. Physiol, , (in press)
  • Knowlton, W.M., Bifolck-Fisher, A., Bautista, D.M., McKemy, D.D., TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimeticsin vivo (2010) Pain, 150, pp. 340-350
  • Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes (2001) J. Mol. Biol., 305, pp. 567-580
  • Kwon, Y., Shen, W.L., Shim, H.S., Montell, C., Fine thermotactic discrimination between the optimal and slightly cooler temperaturesviaa TRPV channel in chordotonal neurons (2010) J. Neurosci., 30, pp. 10465-10471
  • Latorre-Estivalis, J.M., Lazzari, C.R., Guarneri, A.A., Mota, T., Omondi, B.A., Lorenzo, M.G., Genetic basis of triatomine behavior: lessons from available insect genomes (2013) Mem. Inst. Oswaldo Cruz, 108, pp. 63-73
  • Lazzari, C.R., Temperature preference in Triatoma infestans (Hemiptera: Reduviidae) (1991) Bull. Entomol. Res., 81, pp. 273-276
  • Lazzari, C.R., Circadian organization of locomotion activity in the haematophagus bug Triatoma infestans (1992) J. Insect Physiol., 38, pp. 895-903
  • Lazzari, C.R., Orientation towards hosts in haematophagous insects: an integrative perspective (2009) Adv. Insect Physiol., 37, pp. 1-58
  • Lazzari, C.R., Núñez, J.A., The response to radiant heat and the estimation of the temperature of distant sources in Triatoma infestans (1989) J. Insect Physiol., 35 (6), pp. 525-529
  • Lazzari, C.R., Wicklein, M., The cave-like sense organ in the antennae of triatominae bugs (1994) Mem. Inst. Oswaldo Cruz, 89, pp. 643-648
  • Le, S.Q., Gascuel, O., An improved general amino acid replacement matrix (2008) Mol. Biol. Evol., 25, pp. 1307-1320
  • Lee, Y., Lee, J., Bang, S., Hyun, S., Kang, J., Hong, S.T., Bae, E., Kim, J., Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster (2005) Nat. Genet., 37, pp. 305-310
  • Lorenzo Figueiras, A.N., Flores, G.B., Lazzari, C.R., The role of antennae in the thermopreference and biting response of haematophagous bugs (2013) J. Insect Physiol., 59, pp. 1194-1198
  • Lundbaek, J.A., Birn, P., Tape, S.E., Toombes, G.E.S., Søgaard, R., Koeppe, R.E., Gruner, S.M., Andersen, O.S., Capsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity (2005) Mol. Pharmacol., 68, pp. 680-689
  • Maliszewska, J., Tegowska, E., Capsaicin as an organophosphate synergist against Colorado potato beetle (Leptinotarsa decemlineata Say) (2012) J. Plant Prot. Res., 52 (1), pp. 28-34
  • Matsuura, H., Sokabe, T., Kohno, K., Tominaga, M., Kadowaki, T., Evolutionary conservation and changes in insect TRP channels (2009) BMC Evol. Biol., 9, p. 228
  • Neely, G.G., Keene, A.C., Duchek, P., Chang, E.C., Wang, Q.-P., Aksoy, Y.A., Rosenzweig, M., Penninger, J.M., TrpA1 regulates thermal nociception in Drosophila (2011) PLoS ONE, 6 (8), p. e24343
  • Nilius, B., Voets, T., TRP channels: a TR(I)P through a world of multifunctional cation channels (2005) Eur. J. Physiol., 451, pp. 1-10
  • O'Neil, R.G., Brown, R.C., The vanilloid receptor family of calcium permeable channels: molecular integrators of microenvironmental stimuli (2003) News Physiol. Sci., 18, pp. 226-231
  • Olszewska, J., Vanilloid receptors - comparison of structure and functions in mammals and invertebrates (2010) Folia Biol., 58 (1-2). , (Kraków)
  • Olszewska, J., Tegowska, E., Grajpel, B., Adamkiewicz, B., Effect of application of capsaicin and pyrethroid on metabolic rate in mealworm Tenebrio molitor (2010) Ecol. Chem. Eng. A, 17 (10), pp. 1355-1359
  • Olszewska, J., Tegowska, E., Opposite effect of capsaicin and capsazepine on behavioral thermoregulation in insects (2011) J. Comp. Physiol. A., 197, pp. 1021-1026
  • Palkar, R., Lippoldt, E.K., McKemy, D.D., The molecular and cellular basis of thermosensation in mammals (2015) Curr. Opin. Neurobiol., 34, pp. 14-19
  • Pedersen, S.F., Owsianik, G., Nilius, B., TRP channels: an overview (2005) Cell Cal., 38, pp. 233-252
  • Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions (2011) Nat. Methods, 29 (10), pp. 785-786
  • Pires, H.H.R., Lazzari, C.R., Schilman, P.E., Diotaiuti, L., Lorenzo, M.G., Dynamics of thermopreference in the chagas disease vector Panstrongylus megistus (Hemiptera: Reduviidae) (2002) J. Med. Entomol., 39 (5), pp. 716-719
  • Ramsey, I.S., Delling, M., Clapham, D.E., An introduction to TRP channels (2006) Annu. Rev. Physiol., 68, pp. 619-647
  • Reisenman, C.E., Lazzari, C.R., Giurfa, M., Circadian control of photonegative sensitivity in the haematophagous bug, Triatoma infestans (1998) J. Comp. Physiol. A, 183, pp. 533-541
  • Rozen, S., Skaletsky, H., Primer3 on the WWW for general users and for biologist programmers (2000) Methods Mol. Biol., 132, pp. 365-386
  • Rosenzweig, M., Kang, K., Garrity, P.A., Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 14668-14673
  • Schilman, P.E., Lazzari, C.R., Temperature preference in Rhodnius prolixus, effects and possible consequences (2004) Acta Trop., 90, pp. 115-122
  • Schmitz, H., Trenner, S., Hofmann, M.H., Bleckmann, H., The ability of Rhodnius prolixus (Hemiptera, Reduviidae) to approach a thermal source solely by its infrared radiation (2000) J. Insect Physiol., 46, pp. 745-751
  • Schumacher, M.A., Moff, I., Sudanagunta, S.P., Levine, J.D., Molecular cloning of an N-terminal splice variant of the capsaicin receptor Loss of N-terminal domain suggests functional divergence among capsaicin receptor subtypes (2000) J. Biol. Chem., 275, pp. 2756-2762
  • Szallasi, A., Blumberg, P.M., Vanilloid (Capsaicin) receptors and mechanisms (1999) Pharmacol. Rev., 51 (2), pp. 159-211
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0 (2013) Mol. Biol. Evol., 30, pp. 2725-2729
  • Tegowska, E., Grajpel, B., Piechowicz, B., Does red pepper contain an insecticidal compound for Colorado beetle? (2005) IOBC wprs Bull., 28, pp. 121-127
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nuc. Acids Res., 25 (24), pp. 4876-4882
  • Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert, H., Skinner, K., Raumann, B.E., Julius, D., The cloned capsaicin receptor integrates multiple pain-producing stimuli (1998) Neuron, 21, pp. 531-543
  • Tracey, W.D., Wilson, R.I., Laurent, G., Benzer, S., Painless, a Drosophila gene essential for nociception (2003) Cell, 113 (2), pp. 261-273
  • Venkatachalam, K., Montell, C., (2007) TRP Channels. Annu. Rev. Biochem., 76, pp. 387-417
  • Vennekens, R., Owsianik, G., Nilius, B., Vanilloid transient receptor potential cation channels: an overview (2008) Curr. Pharm. Des., 14, pp. 18-31
  • Vinauger, C., Lallement, H., Lazzari, C.R., Learning and memory in Rhodnius prolixus: habituation and aversive operant conditioning of the proboscis extension response (2013) J. Exp. Biol., 216, pp. 892-900
  • Walpole, C.S.J., Bevan, S., Bovermann, G., Boelsterli, J.J., Breckenridge, R., Davies, J.W., Hughes, G.A., Wrigglesworth, R., The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin (1994) J. Med. Chem., 37, pp. 1942-1954
  • Wang, G., Qiu, Y.T., Tan Lu, T., Kwon, H.-W., Pitts, R.J., Van Loon, J.J.A., Takken, W., Zwiebe, L.J., Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae (2009) Eur. J. Neurosci., 30 (6), pp. 967-974
  • Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., Barton, G.J., Jalview version 2, a multiple sequence alignment editor and analysis workbench (2009) Bioinformatics, 25, pp. 1189-1191
  • Welch, J.M., Simon, S.A., Reinhart, P.H., The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 13889-13894
  • Wustmann, G., Rein, K., Wolf, R., Heisenberg, M., A new paradigm for operant conditioning of Drosophila melanogaster (1996) J. Comp. Physiol. A., 179, pp. 429-436
  • Zar, J.H., (2010) Biostatistical Analysis, , Pearson Prentice-Hall, New Jersey
  • Zhong, L., Bellemer, A., Yan, H., Honjo, K., Robertson, J., Hwang, R.Y., Pitt, G.S., Tracey, W.D., Thermosensory and non-thermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat sensor domains of a thermoTRP channel (2012) Cell Rep., 1, pp. 43-55
  • Zopf, L.M., Lazzari, C.R., Tichy, H., Differential effects of ambient temperature on warm cell responses to infrared radiation in the bloodsucking bug Rhodnius prolixus (2014) J. Neurophysiol., 111, pp. 1341-1349
  • Zopf, L.M., Lazzari, C.R., Tichy, H., Infrared detection without specialized infrared receptors in the bloodsucking bug Rhodnius prolixus (2014) J. Neurophysiol, , (in press)

Citas:

---------- APA ----------
Zermoglio, P.F., Latorre-Estivalis, J.M., Crespo, J.E., Lorenzo, M.G. & Lazzari, C.R. (2015) . Thermosensation and the TRPV channel in Rhodnius prolixus. Journal of Insect Physiology, 81, 145-156.
http://dx.doi.org/10.1016/j.jinsphys.2015.07.014
---------- CHICAGO ----------
Zermoglio, P.F., Latorre-Estivalis, J.M., Crespo, J.E., Lorenzo, M.G., Lazzari, C.R. "Thermosensation and the TRPV channel in Rhodnius prolixus" . Journal of Insect Physiology 81 (2015) : 145-156.
http://dx.doi.org/10.1016/j.jinsphys.2015.07.014
---------- MLA ----------
Zermoglio, P.F., Latorre-Estivalis, J.M., Crespo, J.E., Lorenzo, M.G., Lazzari, C.R. "Thermosensation and the TRPV channel in Rhodnius prolixus" . Journal of Insect Physiology, vol. 81, 2015, pp. 145-156.
http://dx.doi.org/10.1016/j.jinsphys.2015.07.014
---------- VANCOUVER ----------
Zermoglio, P.F., Latorre-Estivalis, J.M., Crespo, J.E., Lorenzo, M.G., Lazzari, C.R. Thermosensation and the TRPV channel in Rhodnius prolixus. J. Insect Physiol. 2015;81:145-156.
http://dx.doi.org/10.1016/j.jinsphys.2015.07.014