Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Knockdown resistance to high temperature (KRHT) is a thermal adaptation trait in Drosophila melanogaster. Here we used quantitative real-time PCR (qRT-PCR) to test for possible associations between KRHT and the expression of candidate genes within quantitative trait loci (QTL) in eight recombinant inbred lines (RIL). hsp60 and hsc70-3 map within an X-linked QTL, while CG10383, catsup, ddc, trap1, and cyp6a13 are linked in a KRHT-QTL on chromosome 2. hsc70-3 expression increased by heat-hardening. Principal Components analysis revealed that catsup, ddc and trap1 were either co-expressed or combined in their expression levels. This composite expression variable (e-PC1) was positively associated to KRHT in non-hardened RIL. In heat-hardened flies, hsp60 was negatively related to hsc70-3 on e-PC2, with effects on KRHT. These results are consistent with the notion that QTL can be shaped by expression variation in combined candidate loci. We found composite variables of gene expression (e-PCs) that best correlated to KRHT. Network effects with other untested linked loci are apparent because, in spite of their associations with KRHT phenotypes, e-PCs were sometimes uncorrelated with their QTL genotype. © 2009 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster
Autor:Norry, F.M.; Larsen, P.F.; Liu, Y.; Loeschcke, V.
Filiación:Biological Sciences, Ecology and Genetics, University of Aarhus, Ny Munkegade, Bldg. 1540, DK-8000 Aarhus C, Denmark
College of Plant Protection, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong 271018, China
Danish Agricultural Advisory Service, National Centre for Fur Animals, Udkaersvej 15, DK-8200 Aarhus N, Denmark
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C-1428-EHA) Buenos Aires, Argentina
Palabras clave:Gene expression Principal Components; Heat knockdown resistance; Quantitative polymerase chain reaction; Quantitative trait loci; Recombinant inbred lines; Drosophila protein; chromosome; fly; gene expression; polymerase chain reaction; temperature tolerance; animal; article; chemistry; Drosophila melanogaster; female; gene expression regulation; genetics; heat; male; metabolism; quantitative trait locus; Animals; Drosophila melanogaster; Drosophila Proteins; Female; Gene Expression Regulation; Hot Temperature; Male; Quantitative Trait Loci; Drosophila melanogaster
Año:2009
Volumen:55
Número:11
Página de inicio:1050
Página de fin:1057
DOI: http://dx.doi.org/10.1016/j.jinsphys.2009.07.009
Título revista:Journal of Insect Physiology
Título revista abreviado:J. Insect Physiol.
ISSN:00221910
CODEN:JIPHA
CAS:Drosophila Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221910_v55_n11_p1050_Norry

Referencias:

  • Baden, H.P., Kollias, N., Anderson, R.R., Hopkins, T., Raftery, L., Drosophila melanogaster larvae detect low doses of UVC radiation as manifested by a writhing response (1996) Archives of Insect Biochemistry and Physiology, 32, pp. 187-196
  • Bettencourt, B.R., Hogan, C.C., Nimali, M., Drohan, B.W., Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies (2008) BMC Biology, 6, p. 5
  • Birch-Machin, I., Gao, S., Huen, D., McGirr, R., White, R.A.H., Russell, S., Genomic analysis of heat-shock factor targets in Drosophila (2005) Genome Biology, 6, pp. R63
  • Brown, A.C., Olver, W.I., Donnelly, C.J., May, M.E., Naggert, J.K., Shaffer, D.J., Roopenian, D.C., Searching QTL by gene expression: analysis of diabesity (2005) BMC Genetics, 6, p. 12
  • Carbone, M.A., Jordan, K.W., Lyman, R.F., Harbison, S.T., Leips, J., Morgan, T.J., DeLuca, M., Mackay, T.F.C., Phenotypic variation and natural selection at catsup, a pleiotropic quantitative trait gene in Drosophila (2006) Current Biology, 16, pp. 912-919
  • Chen, M., Kendziorski, C., A statistical framework for expression quantitative trait loci mapping (2007) Genetics, 177, pp. 761-771
  • Coffman, C.J., Wayne, M.L., Nuzhdin, S.V., Higgins, L.A., McIntyre, L.M., Identification of co-regulated transcripts affecting male body size in Drosophila (2005) Genome Biology, 6, pp. R53
  • Curtis, C., Landis, G.N., Folk, D., Wehr, N.B., Hoe, N., Waskar, M., Abdueva, D., Tower, J., Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes (2007) Genome Biology, 8, pp. R262
  • Folk, D.G., Zwollo, P., Rand, D.M., Gilchrist, G.W., Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males (2006) Journal of Experimental Biology, 209, pp. 3964-3973
  • Harbison, S.T., Chang, S., Kamdar, K.P., Mackay, T.F.C., Quantitative genomics of starvation stress resistance in Drosophila (2005) Genome Biology, 6, pp. R36
  • Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches (2003) Journal of Thermal Biology, 28, pp. 175-216
  • Hoffmann, A.A., Willi, Y., Detecting genetic responses to environmental change (2008) Nature Reviews Genetics, 9, pp. 421-431
  • Huey, R.B., Crill, W.D., Kingsolver, J.G., Weber, K.E., A method for rapid measurement of heat or cold resistance of small insects (1992) Functional Ecology, 6, pp. 489-494
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 22DDT method (2001) Methods, 25, pp. 402-408
  • Gupta, S., Knowlton, A.A., HSP60, bax, apoptosis and the heart (2005) Journal of Cellular and Molecular Medicine, 9, pp. 51-58
  • Mackay, T.F.C., The genetic architecture of quantitative traits (2001) Annual Review of Genetics, 35, pp. 303-339
  • Morgan, T.J., Mackay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242
  • Norry, F.M., Dahlgaard, J., Loeschcke, V., Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster (2004) Molecular Ecology, 13, pp. 3585-3594
  • Norry, F.M., Gomez, F.H., Loeschcke, V., Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a central region of chromosome 2 in Drosophila melanogaster (2007) Molecular Ecology, 16, pp. 3274-3284
  • Norry, F.M., Sambucetti, P., Scannapieco, A.C., Gomez, F.H., Loeschcke, V., X-linked QTL for knockdown resistance to high temperature in Drosophila melanogaster (2007) Insect Molecular Biology, 16, pp. 509-513
  • Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V., QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2008) Molecular Ecology, 17, pp. 4570-4581
  • Nuzhdin, S.V., Harshman, L.G., Zhou, M., Harmon, K., Genome-enabled hitchhiking mapping identifies QTLs for stress resistance in natural Drosophila (2007) Heredity, 99, pp. 313-321
  • Peterson, L.E., Factor analysis of cluster-specific gene expression levels from cDNA microarrays (2002) Computer Methods and Programs in Biomedicine, 69, pp. 179-188
  • Rako, L., Blacket, M.J., McKechnie, S.W., Hoffmann, A.A., Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline (2007) Molecular Ecology, 16, pp. 2948-2957
  • Rozen, S., Skaletsky, H.J., Primer3 on the WWW for general users and for biologist programmers (2000) Bioinformatics Methods and Protocols: Methods in Biology, pp. 365-386. , Krawetz S., and Misener S. (Eds), Humana Press, Totowa, NJ
  • Sabban, E.L., Kvetnansky, R., Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events (2001) Trends in Neurosciences, 24, pp. 91-98
  • Sillanpaa, M.J., Noykova, N., Hierarchical modeling of clinical and expression quantitative trait loci (2008) Heredity, 101, pp. 271-284
  • Sørensen, J.G., Nielsen, M.M., Kruhøffer, M., Justesen, J., Loeschcke, V., Full genome gene expression analysis of the heat stress response in Drosophila melanogaster (2005) Cell Stress and Chaperones, 10, pp. 312-328
  • Sørensen, J.G., Nielsen, M.M., Loeschcke, V., Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors (2007) Journal of Evolutionary Biology, 20, pp. 1624-1636
  • Sokal, R.R., Rohlf, F.J., (1995) Biometry the Principles and Practice of Statistics in Biological Research, , WH Freeman and Company, New York
  • StatSoft, (1999) STATISTICA for Windows (Computer Program Manual), , StatSoft Inc., Tulsa
  • Telonis-Scott, M., Hallas, R., McKechnie, S.W., Wee, C.W., Hoffmann, A.A., Selection for cold resistance alters gene transcript levels in Drosophila melanogaster (2009) Journal of Insect Physiology, 55, pp. 549-555
  • Wright, T.R.F., The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster (1987) Advances in Genetics, 24, pp. 127-222
  • Zeng, Z.B., QTL mapping and the genetic basis of adaptation: recent developments (2005) Genetica, 123, pp. 25-37

Citas:

---------- APA ----------
Norry, F.M., Larsen, P.F., Liu, Y. & Loeschcke, V. (2009) . Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster. Journal of Insect Physiology, 55(11), 1050-1057.
http://dx.doi.org/10.1016/j.jinsphys.2009.07.009
---------- CHICAGO ----------
Norry, F.M., Larsen, P.F., Liu, Y., Loeschcke, V. "Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster" . Journal of Insect Physiology 55, no. 11 (2009) : 1050-1057.
http://dx.doi.org/10.1016/j.jinsphys.2009.07.009
---------- MLA ----------
Norry, F.M., Larsen, P.F., Liu, Y., Loeschcke, V. "Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster" . Journal of Insect Physiology, vol. 55, no. 11, 2009, pp. 1050-1057.
http://dx.doi.org/10.1016/j.jinsphys.2009.07.009
---------- VANCOUVER ----------
Norry, F.M., Larsen, P.F., Liu, Y., Loeschcke, V. Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster. J. Insect Physiol. 2009;55(11):1050-1057.
http://dx.doi.org/10.1016/j.jinsphys.2009.07.009