Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The increase in body temperature over that of the environment has been frequently reported in insects, in particular in relation with flight activity. Scarab beetles of the genus Cyclocephala living in tropical areas are known to exploit the heat produced by thermogenic plants, also producing heat by endothermy. Here, we report the first case of endothermy in a species of this genus living in a temperate region, Cyclocephala signaticollis. We characterised the phenomenon in this beetle using infrared thermography and exposing them to different thermal conditions. We evaluated the frequency of endothermic bouts, the nature of their periodic occurrence and their association with the activity cycles of the beetles. We found that endothermy occurs in both males and females in a cyclic fashion, at the beginning of the night, around 21:00 local time. The mean temperature increase was of 9 °C, and the mean duration of the bouts was 7 min. During endothermic bouts, the temperature of the thorax was on average 3.6 °C higher than that of the head and 4.8 °C above that of the abdomen. We found no differences between females and males in the maximum temperature attained and in the duration of the endothermy bouts. The activity period of the beetles extends throughout the whole night, with maximum activity between 22:00 and 23:00. By subjecting the beetles to different light regimes we were able to determine that the rhythm of endothermy is not controlled by the circadian system. Finally, we experimentally tested if by performing endothermy the scarabs try to reach a particular body temperature or if they invest a given amount of energy in heating up, instead. Our results indicate that at lower ambient temperature beetles show higher increase in body temperature, and that endothermy bouts last longer than at relatively higher ambient temperatures. We discuss our findings in relation to the ecology and behaviour of this beetle pest. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Endothermy in the temperate scarab Cyclocephala signaticollis
Autor:Zermoglio, P.F.; Castelo, M.K.; Lazzari, C.R.
Filiación:Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, France
Palabras clave:Coleoptera; Dynastinae; Thermal biology; Thermogenesis; Coleoptera; Dynastinae; Hexapoda; Scarabaeidae; Scarabaeus
Año:2018
Volumen:108
Página de inicio:10
Página de fin:16
DOI: http://dx.doi.org/10.1016/j.jinsphys.2018.04.012
Título revista:Journal of Insect Physiology
Título revista abreviado:J. Insect Physiol.
ISSN:00221910
CODEN:JIPHA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221910_v108_n_p10_Zermoglio

Referencias:

  • Abram, P.K., Boivin, G., Moiroux, J., Brodeur, J., Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity (2016) Biol. Rev.
  • Albuquerque, L.S.C., Grossi, P.C., Iannuzzi, L., Flight patterns and sex ratio of beetles of the subfamily Dynastinae (Coleoptera, Melolonthidae) (2016) Rev. Bras. Entomol., 60 (3), pp. 248-254
  • Alvarado, L., Sistemática y binomia de los estados inmaduros de coleópteros Scarabaeidae que habitan en el suelo (1980), p. 199. , Tesis doctoral Universidad de La Plata La Plata, Argentina; Alvarado, L., Senigagliesi, C., Marta, L., (1981) Composición poblacional de larvas de Scarabaeidae tras sucesivos cultivos de maíz, pp. 156-167
  • Bartholomew, G.A., Casey, T.M., Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles (1977) J. Therm. Biol, 2, pp. 173-176
  • Bartholomew, G.A., Casey, T.M., Endothermy during terrestrial activity in large beetles (1977) Science, 195, pp. 882-883
  • Bartholomew, G.A., Heinrich, B., Endothermy in African dung beetles during flight, ball making, and ball rolling (1978) J. Exp. Biol., 73, pp. 65-83
  • Bernhardt, P., Convergent evolution and adaptive radiation of beetle-pollinated angiosperms (2000) Plant Syst. Evol., 222, pp. 293-320
  • Cabrera, A.L., Fitogeografía de la República Argentina (1971) Bol. Soc. Arg. Bot, 14 (1-2), p. 50
  • Carne, P.B., Cyclocephala signaticollis Burmeister, an introduced pasture scarab (Coleoptera) (1957) Proc. Linn. Soc. N. S. W., 81, pp. 217-221
  • Chappell, M.A., Thermoregulation and energetics of the green fig beetle (Cotinus texana) during flight and foraging behavior (1984) Physiol. Zool., 57, pp. 581-589
  • Chown, S.L., Nicolson, S.W., Insect Physiological Ecology, Mechanisms and Patterns (2004), p. 243. , Oxford University Press Oxford, UK; Chown, S.L., Scholtz, C.H., Temperature regulation in the nocturnal melolonthine Sparrmannia flava (1993) J. Therm. Biol, 18, pp. 25-33
  • Cramer, J.M., Meeuse, A.D.J., Teunissen, P.A., A note on the pollination of nocturnally flowering species of Nymphaea (1975) Acta Bot. Neerl., 24, pp. 489-490
  • Crisci, J.V., Araceae (1968) Flora de la Provincia de Buenos Aires, Parte I, 4, pp. 425-427. , A.L. Cabrera Colección Científica del Instituto Nacional de Tecnología Agropecuaria
  • Crisci, J.V., Flora Argentina: “Araceae” (1971) Revista del Museo de La Plata (Nueva Serie), Sección botánica N° 64, 11, pp. 193-284
  • Dieringer, G., Reyes-Castillo, P., Lara, M., Cabrera, R.L., Loya, L., Endothermy and floral utilization of Cyclocephala caelestis (Coleoptera: Scarabaeoidea; Melolonthidae): a cloud forest endemic beetle (1998) Acta Zool. Mex., 73, pp. 145-153
  • Dinno, A., (2016), https://cran.r-project.org/web/packages/dunn.test/dunn.test.pdf, Package ‘dunn.test’. Version 1.3.2. Available from: (accessed Jan 2017); Dorsett, D.A., Preparation for flight by hawk-moths (1962) J. Exp. Biol., 39, pp. 579-588
  • Frew, A., Barnett, K., Nielsen, U.N., Riegler, M., Johnson, S.N., Belowground ecology of scarabs feeding on grass roots: current knowledge and future directions for management in Australasia (2016) Front. Plant Sci., 7, p. 321
  • Gibernau, M., Barabé, D., Cerdan, P., Dejean, A., Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana (1999) Int. J. Plant Sci., 160, pp. 1135-1143
  • Gottsberger, G., Some pollination strategies in Neotropical savannas and forests (1986) Plant Syst. Evol., 152, pp. 29-45
  • Gottsberger, G., The reproductive biology of primitive angiosperms (1988) Taxon, 37 (3), pp. 630-643
  • Gottsberger, G., Flowers and beetles in the South American tropics (1990) Bot. Acta, 103, pp. 360-365
  • Gottsberger, G., Pollination and evolution in neotropical Annonaceae (1999) Plant Spec. Biol., 14, pp. 143-152
  • Heinrich, B., The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation (1993), p. 601. , Harvard University Press Cambridge, MA; Heinrich, B., The Thermal Warriors: Strategies of Insect Survival (1996), p. 217. , Harvard University Press Cambridge, MA; Heinrich, B., Bartholomew, G.A., Roles of endothermy and size in inter- and intraspecific competition for elephant dung in an African dung beetle, Scarabaeus laevistriatus (1979) Physiol. Zool., 52, pp. 484-496
  • Heinrich, B., McClain, E., ‘Laziness’ and hypothermia as a foraging strategy in flower scarabs (Coleoptera: Scarabaeidae) (1986) Physiol. Zool., 59, pp. 273-282
  • Kingsolver, J.G., Butterfly thermoregulation: organismic mechanisms and population consequences (1985) J. Res. Lepid., 24 (1), pp. 1-20
  • Kovac, H., Stabentheiner, A., Schmaranzer, S., Thermoregulation of water foraging honeybees – balancing of endothermic activity with radiative heat gain and functional requirements (2010) J. Insect Physiol., 56, pp. 1834-1845
  • Krogh, A., Zeuthen, E., The mechanism of flight preparation in some insects (1941) J. Exp. Biol., 18, pp. 1-10
  • Lahondère, C., Lazzari, C.R., Thermal effect of blood feeding in the telmophagous fly Glossina morsitans morsitans (2015) J. Therm. Biol., 48, pp. 45-50
  • Lehmann, F.O., Ambient temperature affects free-flight performance in the fruit fly Drosophila melanogaster (1999) J. Comp. Physiol. B., 169 (3), p. 71. , 165
  • López, A.N., Álvarez Castillo, H.A., Carmona, D., Manetti, P.L., Vincini, A.M., Aspectos morfológicos y biológicos de Cyclocephala signaticollis Burm. (Coleoptera: Scarabaeidae) (1994) SAGP-INTA, CERBAS, EEA Balcarce, Informe Técnico, 123, p. 18
  • Merrick, M.J., Smith, R.J., Temperature regulation in burying beetles (Nicrophorus spp.: Coleoptera: Silphidae): effects of body size, morphology and environmental temperature (2004) J. Exp. Biol., 207, pp. 723-733
  • Moore, M.R., Jameson, M.L., Floral associations of Cyclocephaline scarab beetles (2013) J. Insect Sci., 13, p. 100
  • Morgan, K.R., Temperature regulation, energy metabolism and mate searching in rain beetles (Pleocoma spp.), winter-active, endothermic scarabs (Coleoptera) (1987) J. Exp. Biol., 128, pp. 107-122
  • Morgan, K.R., Bartholomew, G.A., Homeothermic response to reduced ambient temperature in a scarab beetle (1982) Science, 216, pp. 1409-1410
  • Oertli, J.J., Relationship of wing beat frequency and temperature during takeoff flight in temperate-zone beetles (1989) J. Exp. Biol., 145, pp. 321-338
  • Potter, D.A., Destructive Turfgrass Insects: Biology, Diagnosis and Control (1998), p. 336. , Ann Arbor Press MI; Ratcliffe, B.C., More new species of Cyclocephala Dejean, 1821 from South America (Scarabaeidae: Dynastinae: Cyclocephalini) (2008) Coleopt. Bull., 62, pp. 221-224
  • Remedi de Gavotto, A.L., Ciclo Biológico de Cyclocephala signaticollis Burm. y caracteres específicos de su larva (1964) Revista de Investigaciones Agropecuarias. Serie 5 – Patología Vegetal, 1 (10), pp. 151-161
  • Saeki, Y., Kruse, K.C., Switzer, P.V., Physiological costs of mate guarding in the Japanese beetle (Popillia japonica Newman) (2005) Ethology, 111, pp. 863-877
  • Saunders, D.S., (2002) Insect Clocks, p. 576. , third ed. Elsevier Amsterdam
  • Seymour, R.S., Matthews, P.G.D., The role of thermogenesis in the pollination biology of the Amazon waterlily Victoria amazonica (2006) Ann. Bot., 98, pp. 1129-1135
  • Seymour, R.S., Schultze-Motel, P., Heat-producing flowers (1997) Endeavour, 21 (3), pp. 125-129
  • Seymour, R.S., White, C.R., Gibernau, M., Environmental biology: heat reward for insect pollinators (2003) Nature, 426, pp. 243-244
  • Seymour, R.S., White, C.R., Gibernau, M., Endothermy of dynastinae scarab beetles (Cyclocephala colasi) associated with pollination biology of a thermogenic arum lily (Philodendron solimoesense) (2009) J. Exp. Biol., 212, pp. 2960-2968
  • Souza, T.B., Maia, A.C.D., Schlindweing, C., Albuquerque, L.S.C., Iannuzzi, L., The life of Cyclocephala celata Dechambre, 1980 (Coleoptera: Scarabaeidae: Dynastinae) in captivity with descriptions of the immature stages (2014) J. Nat. Hist., 48, pp. 275-283
  • Stabentheiner, A., Kovac, H., Energetic optimisation of foraging honeybees: flexible change of strategies in response to environmental challenges (2014) PLoS One, 9 (8), p. e105432
  • Stabentheiner, A., Schmaranzer, S., Thermographic determination of body temperatures in honey bees and hornets: calibration and applications (1987) Thermology, 2, pp. 563-572
  • Stabentheiner, A., Kovac, H., Hetz, S.K., Käfer, H., Stabentheiner, G., Assessing honeybee and wasp thermoregulation and energetics – new insights by combination of flow respirometry with infrared thermography (2012) Thermochim. Acta, 534, pp. 77-86
  • Stevenson, R.D., Josephson, R.K., Effects of operating frequency and temperature on mechanical power output from moth flight muscle (1990) J. Exp. Biol., 149, pp. 61-78
  • Verdu, J.R., Diaz, A., Galante, E., Thermoregulatory strategies in two closely related sympatric Scarabaeus species (Coleoptera: Scarabaeinae) (2004) Physiol. Entomol., 29, pp. 32-38
  • Verdu, J.R., Arellano, L., Numa, C., Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeldae): effect of body size and ecophysiological constraints in flight (2006) J. Insect Physiol., 52, pp. 854-860
  • Wiersema, J.H., A monograph of the Nymphaea subgenus Hydrocallis (Nymphaeaceae) (1987) Systematic Botany Monographs, 16, pp. 1-112
  • Ybarrondo, B.A., Heinrich, B., Thermoregulation and response to competition in the African dung beetle Kheper nigroaeneus (Coleoptera: Scarabaeidae) (1996) Physiol. Zool., 69, pp. 35-48

Citas:

---------- APA ----------
Zermoglio, P.F., Castelo, M.K. & Lazzari, C.R. (2018) . Endothermy in the temperate scarab Cyclocephala signaticollis. Journal of Insect Physiology, 108, 10-16.
http://dx.doi.org/10.1016/j.jinsphys.2018.04.012
---------- CHICAGO ----------
Zermoglio, P.F., Castelo, M.K., Lazzari, C.R. "Endothermy in the temperate scarab Cyclocephala signaticollis" . Journal of Insect Physiology 108 (2018) : 10-16.
http://dx.doi.org/10.1016/j.jinsphys.2018.04.012
---------- MLA ----------
Zermoglio, P.F., Castelo, M.K., Lazzari, C.R. "Endothermy in the temperate scarab Cyclocephala signaticollis" . Journal of Insect Physiology, vol. 108, 2018, pp. 10-16.
http://dx.doi.org/10.1016/j.jinsphys.2018.04.012
---------- VANCOUVER ----------
Zermoglio, P.F., Castelo, M.K., Lazzari, C.R. Endothermy in the temperate scarab Cyclocephala signaticollis. J. Insect Physiol. 2018;108:10-16.
http://dx.doi.org/10.1016/j.jinsphys.2018.04.012