Artículo

Pasquinelli, V.; Rovetta, A.I.; Alvarez, I.B.; Jurado, J.O.; Musella, R.M.; Palmero, D.J.; Malbrán, A.; Samten, B.; Barnes, P.F.; García, V.E. "Phosphorylation of mitogen-activated protein kinases contributes to interferon γ production in response to mycobacterium tuberculosis" (2013) Journal of Infectious Diseases. 207(2):340-350
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Immune control of Mycobacterium tuberculosis depends on interferon γ (IFN-γ)-producing CD4+ lymphocytes. Previous studies have shown that T cells from patients with tuberculosis produce less IFN-γ, compared with healthy donors, in response to mycobacterial antigens, although IFN-γ responses to mitogens are preserved. In this work, we found that M. tuberculosis-induced IFN-γ production by human T cells correlated with phosphorylation of the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), and p38. Moreover, the majority of IFN-γ-producing T cells expressed signaling lymphocyte activation molecule (SLAM), and SLAM activation further increased ERK phosphorylation. Interestingly, patients with tuberculosis had delayed activation of ERK and p38, and this was most marked in patients with the poorest IFN-γ responses (ie, low responders). Besides, SLAM signaling failed to phosphorylate ERK in low responders. Our findings suggest that activation of p38 and ERK, in part through SLAM, mediates T-cell IFN-γ production in response to M. tuberculosis, a pathway that is defective in patients with tuberculosis. © The Author 2012. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.

Registro:

Documento: Artículo
Título:Phosphorylation of mitogen-activated protein kinases contributes to interferon γ production in response to mycobacterium tuberculosis
Autor:Pasquinelli, V.; Rovetta, A.I.; Alvarez, I.B.; Jurado, J.O.; Musella, R.M.; Palmero, D.J.; Malbrán, A.; Samten, B.; Barnes, P.F.; García, V.E.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, Pabellón II, piso 4, Capital Federal, 1428, Buenos Aires, Argentina
División de Neumotisiología, Hospital F. J. Muñiz, Argentina
Unidad de Alergia, Asma e Inmunología Clínica, Hospital Británico de Buenos Aires, Argentina
Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, United States
Palabras clave:CREB; IFN-γ; MAPK; signaling; Tuberculosis; gamma interferon; mitogen activated protein kinase; mitogen activated protein kinase p38; Mycobacterium antigen; small interfering RNA; tuberculostatic agent; acid fast bacterium; article; CD4+ T lymphocyte; enzyme linked immunosorbent assay; flow cytometry; interferon production; lung tuberculosis; lymphocyte activation; Mycobacterium tuberculosis; nonhuman; priority journal; protein phosphorylation; T lymphocyte; Western blotting
Año:2013
Volumen:207
Número:2
Página de inicio:340
Página de fin:350
DOI: http://dx.doi.org/10.1093/infdis/jis672
Título revista:Journal of Infectious Diseases
Título revista abreviado:J. Infect. Dis.
ISSN:00221899
CODEN:JIDIA
CAS:gamma interferon, 82115-62-6; mitogen activated protein kinase, 142243-02-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221899_v207_n2_p340_Pasquinelli

Referencias:

  • Giacomini, E., Iona, E., Ferroni, L., Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response (2001) J Immunol, 166, pp. 7033-7041
  • Cooper, A.M., Dalton, D.K., Stewart, T.A., Griffin, J.P., Russell, D.G., Orme, I.M., Disseminated tuberculosis in interferon gamma gene-disrupted mice (1993) J Exp Med, 178, pp. 2243-2247
  • Cunningham, J.A., Kellner, J.D., Bridge, P.J., Trevenen, C.L., McLeod, D.R., Davies, H.D., Disseminated bacille Calmette-Guerin infection in an infant with a novel deletion in the interferon-gamma receptor gene (2000) Int J Tuberc Lung Dis, 4, pp. 791-794
  • Newport, M.J., Huxley, C.M., Huston, S., A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection (1996) N Engl J Med, 335, pp. 1941-1949
  • Samten, B., Ghosh, P., Yi, A.K., Reduced expression of nuclear cyclic adenosine 5'-monophosphate response element-binding proteins and IFN-gamma promoter function in disease due to an intracellular pathogen (2002) J Immunol, 168, pp. 3520-3526
  • Sodhi, A., Gong, J., Silva, C., Qian, D., Barnes, P.F., Clinical correlates of interferon gamma production in patients with tuberculosis (1997) Clin Infect Dis, 25, pp. 617-620
  • Ho, I.C., Glimcher, L.H., Transcription: Tantalizing times for T cells (2002) Cell, 109 (SUPPL.), pp. S109-S120
  • Dong, C., Davis, R.J., Flavell, R.A., MAP kinases in the immune response (2002) Annu Rev Immunol, 20, pp. 55-72
  • Adler, H.S., Kubsch, S., Graulich, E., Ludwig, S., Knop, J., Steinbrink, K., Activation of MAP kinase p38 is critical for the cell-cycle-controlled suppressor function of regulatory T cells (2007) Blood, 109, pp. 4351-4359
  • Blumenthal, A., Ehlers, S., Ernst, M., Flad, H.-D., Reiling, N., Control of Mycobacterial Replication in Human Macrophages: Roles of Extracellular Signal-Regulated Kinases 1 and 2 and p38 Mitogen-Activated Protein Kinase Pathways (2002) Infection and Immunity, 70, pp. 4961-4967
  • Cantrell, D.A., T-cell antigen receptor signal transduction (2002) Immunology, 105, pp. 369-374
  • Huang, Y., Wange, R.L., T cell receptor signaling: Beyond complex complexes (2004) J Biol Chem, 279, pp. 28827-28830
  • Schorey, J.S., Cooper, A.M., Macrophage signalling upon mycobacterial infection: The MAP kinases lead the way (2003) Cellular Microbiology, 5, pp. 133-142
  • Fietta, A.M., Morosini, M., Meloni, F., Bianco, A.M., Pozzi, E., Pharmacological analysis of signal transduction pathways required for Mycobacteri-um tuberculosis-induced IL-8 and MCP-1 production in human peripheral monocytes (2002) Cytokine, 19, pp. 242-249
  • Shnyreva, M., Weaver, W.M., Blanchette, M., Evolutionarily conserved sequence elements that positively regulate IFN-gamma expression in T cells (2004) Proc Natl Acad Sci U S A, 101, pp. 12622-12627
  • Cippitelli, M., Sica, A., Viggiano, V., Negative transcriptional regulation of the interferon-gamma promoter by glucocorticoids and dominant negative mutants of c-Jun (1995) J Biol Chem, 270, pp. 12548-12556
  • Penix, L.A., Sweetser, M.T., Weaver, W.M., Hoeffler, J.P., Kerppola, T.K., Wilson, C.B., The proximal regulatory element of the interferon-gamma promoter mediates selective expression in T cells (1996) J Biol Chem, 271, pp. 31964-31972
  • Pasquinelli, V., Townsend, J.C., Jurado, J.O., IFN-gamma production during active tuberculosis is regulated by mechanisms that involve IL-17, SLAM, and CREB (2009) J Infect Dis, 199, pp. 661-665
  • Roux, P.P., Blenis, J., ERK and p38 MAPK-Activated Protein Kinases: A Family of Protein Kinases with Diverse Biological Functions (2004) Microbiology and Molecular Biology Reviews, 68, pp. 320-344
  • Pasquinelli, V., Quiroga, M.F., Martinez, G.J., Expression of signaling lymphocytic activation molecule-associated protein interrupts IFN-gamma production in human tuberculosis (2004) J Immunol, 172, pp. 1177-1185
  • Malbran, A., Belmonte, L., Ruibal-Ares, B., Loss of circulating CD27 + memory B cells and CCR4+ T cells occurring in association with elevated EBV loads in XLP patients surviving primary EBV infection (2004) Blood, 103, pp. 1625-1631
  • Elbashir, S.M., Harborth, J., Weber, K., Tuschl, T., Analysis of gene function in somatic mammalian cells using small interfering RNAs (2002) Methods, 26, pp. 199-213
  • Samten, B., Howard, S.T., Weis, S.E., Cyclic AMP response elementbinding protein positively regulates production of IFN-gamma by T cells in response to a microbial pathogen (2005) J Immunol, 174, pp. 6357-6363
  • Smith-Garvin, J.E., Koretzky, G.A., Jordan, M.S., T cell activation (2009) Annu Rev Immunol, 27, pp. 591-619
  • Jurado, J.O., Pasquinelli, V., Alvarez, I.B., IL-17 and IFN-gamma expression in lymphocytes from patients with active tuberculosis correlates with the severity of the disease (2012) J Leukoc Biol, 91, pp. 991-1002
  • Berenson, L.S., Yang, J., Sleckman, B.P., Murphy, T.L., Murphy, K.M., Selective Requirement of p38a MAPK in Cytokine-Dependent, but Not Antigen Receptor-Dependent, Th1 Responses (2006) The Journal of Immunology, 176, pp. 4616-4621
  • Morinobu, A., Gadina, M., Strober, W., STAT4 serine phosphoryla-tion is critical for IL-12-induced IFN-γ Production but not for cell proliferation (2002) Proceedings of the National Academy of Sciences, 99, pp. 12281-12286
  • Visconti, R., Gadina, M., Chiariello, M., Importance of the MKK6/p38 pathway for interleukin- 12â€"induced STAT4 serine phosphoryla-tion and transcriptional activity (2000) Blood, 96, pp. 1844-1852
  • Adachi, K., Davis, M.M., T-cell receptor ligation induces distinct signaling pathways in naive vs. antigen-experienced t cells (2010) Proceedings of the National Academy of Sciences, 108, pp. 1549-1554
  • Li, C., Beavis, P., Palfreeman, A.C., Amjadi, P., Kennedy, A., Brennan, F.M., Activation of p38 mitogen-activated protein kinase is critical step for acquisition of effector function in cytokine-activated t cells but acts as a negative regulator in t cells activated through the t-cell receptor (2011) Immunology, 132, pp. 104-110
  • Zhang, M., Gately, M.K., Wang, E., Interleukin 12 at the site of disease in tuberculosis (1994) J Clin Invest, 93, pp. 1733-1739
  • Li, X., Chaudry, I.H., Choudhry, M.A., ERK and not p38 pathway is required for IL-12 restoration of T cell IL-2 and IFN-gamma in a rodent model of alcohol intoxication and burn injury (2009) J Immunol, 183, pp. 3955-3962
  • Rajaram, M.V., Ni, B., Morris, J.D., Mycobacterium tuberculosis lip-omannan blocks tnf biosynthesis by regulating macrophage mapk-activated protein kinase 2 (mk2) and microrna mir-125b (2011) Proc Natl Acad Sci U S A, 108, pp. 17408-17413
  • Lee, H.M., Shin, D.M., Kim, K.K., Lee, J.S., Paik, T.H., Jo, E.K., Roles of reactive oxygen species in CXCL8 and CCL2 expression in response to the 30-kDa antigen of Mycobacterium tuberculosis (2009) J Clin Immunol, 29, pp. 46-56
  • Yang, C.S., Lee, J.S., Song, C.H., Protein kinase C zeta plays an essential role for Mycobacterium tuberculosis-induced extracellular signalregulated kinase 1/2 activation in monocytes/macrophages via Tolllike receptor 2 (2007) Cell Microbiol, 9, pp. 382-396
  • Mendez-Samperio, P., Trejo, A., Miranda, E., Activation of ERK1/2 and TNF-alpha production are mediated by calcium/calmodulin, and PKA signaling pathways during Mycobacterium bovis infection (2006) J Infect, 52, pp. 147-153
  • Nair, S., Ramaswamy, P.A., Ghosh, S., The PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage (2009) J Immunol, 183, pp. 6269-6281
  • Fratti, R.A., Chua, J., Deretic, V., Induction of p38 Mitogen-activated Protein Kinase Reduces Early Endosome Autoantigen 1 (EEA1) Recruitment to Phagosomal Membranes (2003) Journal of Biological Chemistry, 278, pp. 46961-46967
  • Van Den Blink, B., Juffermans, N.P., Ten Hove, T., P38 Mitogen-Activated Protein Kinase Inhibition Increases Cytokine Release by Macrophages in Vitro and during Infection in Vivo (2001) The Journal of Immunology, 166, pp. 582-587
  • Pym, A.S., Brodin, P., Brosch, R., Huerre, M., Cole, S.T., Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobac-terium bovis BCG and Mycobacterium microti (2002) Molecular Microbiology, 46, pp. 709-717
  • Lewis, K.N., Liao, R., Guinn, K.M., Deletion of RD1 from Mycobacte-rium tuberculosis Mimics Bacille Calmette-Guérin Attenuation (2003) Journal of Infectious Diseases, 187, pp. 117-123
  • Peng, H., Wang, X., Barnes, P.F., Tang, H., Townsend, J.C., Samten, B., The Mycobacterium tuberculosis Early Secreted Antigenic Target of 6 kDa Inhibits T Cell Interferon-γ Production through the p38 Mitogen-activated Protein Kinase Pathway (2011) Journal of Biological Chemistry, 286, pp. 24508-24518
  • Wen, A.Y., Sakamoto, K.M., Miller, L.S., The role of the transcription factor CREB in immune function (2010) J Immunol, 185, pp. 6413-6419
  • Grady, G.C., Mason, S.M., Stephen, J., Zuniga-Pflucker, J.C., Michie, A.M., Cyclic adenosine 5'-monophosphate response element binding protein plays a central role in mediating proliferation and differentiation downstream of the pre-TCR complex in developing thymocytes (2004) J Immunol, 173, pp. 1802-1810
  • Muthusamy, N., Leiden, J.M., A protein kinase C-, Ras-, and RSK2-dependent signal transduction pathway activates the cAMP-responsive element-binding protein transcription factor following T cell receptor engagement (1998) J Biol Chem, 273, pp. 22841-22847
  • Hughes-Fulford, M., Sugano, E., Schopper, T., Li, C.F., Boonyaratanakorn-Kit, J.B., Cogoli, A., Early immune response and regulation of IL-2 receptor subunits (2005) Cell Signal, 17, pp. 1111-1124
  • Kaiser, M., Wiggin, G.R., Lightfoot, K., Arthur, J.S., MacDonald, A., MSK regulate TCR-induced CREB phosphorylation but not immediate early gene transcription (2007) Eur J Immunol, 37, pp. 2583-2595
  • Iezzi, G., Karjalainen, K., Lanzavecchia, A., The duration of antigenic stimulation determines the fate of naive and effector T cells (1998) Immunity, 8, pp. 89-95

Citas:

---------- APA ----------
Pasquinelli, V., Rovetta, A.I., Alvarez, I.B., Jurado, J.O., Musella, R.M., Palmero, D.J., Malbrán, A.,..., García, V.E. (2013) . Phosphorylation of mitogen-activated protein kinases contributes to interferon γ production in response to mycobacterium tuberculosis. Journal of Infectious Diseases, 207(2), 340-350.
http://dx.doi.org/10.1093/infdis/jis672
---------- CHICAGO ----------
Pasquinelli, V., Rovetta, A.I., Alvarez, I.B., Jurado, J.O., Musella, R.M., Palmero, D.J., et al. "Phosphorylation of mitogen-activated protein kinases contributes to interferon γ production in response to mycobacterium tuberculosis" . Journal of Infectious Diseases 207, no. 2 (2013) : 340-350.
http://dx.doi.org/10.1093/infdis/jis672
---------- MLA ----------
Pasquinelli, V., Rovetta, A.I., Alvarez, I.B., Jurado, J.O., Musella, R.M., Palmero, D.J., et al. "Phosphorylation of mitogen-activated protein kinases contributes to interferon γ production in response to mycobacterium tuberculosis" . Journal of Infectious Diseases, vol. 207, no. 2, 2013, pp. 340-350.
http://dx.doi.org/10.1093/infdis/jis672
---------- VANCOUVER ----------
Pasquinelli, V., Rovetta, A.I., Alvarez, I.B., Jurado, J.O., Musella, R.M., Palmero, D.J., et al. Phosphorylation of mitogen-activated protein kinases contributes to interferon γ production in response to mycobacterium tuberculosis. J. Infect. Dis. 2013;207(2):340-350.
http://dx.doi.org/10.1093/infdis/jis672