Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Myeloid-derived suppressor cells (MDSCs) are key regulatory cells that control inflammation and promote tumor-immune escape. To date, no specific immunomodulatory drug has proven efficacy in targeting the expansion and/or function of these cells in different pathophysiologic settings. In this study, we identified a context-dependent effect of the nonsteroidal anti-inflammatory drug indomethacin (IND) on MDSCs, depending on whether they were derived from tumor microenvironments (TME) or from tumor-free microenvironments (TFME). Treatment of mice bearing the LP07 lung adenocarcinoma with IND inhibited the suppressive activity of splenic MDSCs, which restrained tumor growth through mechanisms involving CD8+ T cells. The same effect was observed when MDSCs were treated with IND and conditioned media from LP07 tumor cells in vitro. However, in the absence of a tumor context, IND enhanced the intrinsic suppressive function of MDSCs and amplified their protumoral activity. In a model of autoimmune neuroinflammation, IND-treated MDSCs differentiated in TFME attenuated inflammation, whereas IND-treated MDSCs differentiated in TME aggravated clinical symptoms and delayed resolution of the disease. Mechanistically, IND reduced arginase activity as well as NO and reactive oxygen species production in MDSCs differentiated in TME but not in TFME. Moreover, expression of the C/EBP-β transcription factor isoforms correlated with the suppressive activity of IND-treated MDSCs. Our study unveils the dual and context-dependent action of IND, a drug that serves both as an anti-inflammatory and anticancer agent, which differentially affects MDSC activity whether these cells are derived from TME or TFME. These results have broad clinical implication in cancer, chronic inflammation and autoimmunity. Copyright © 2015 by The American Association of Immunologists, Inc.

Registro:

Documento: Artículo
Título:Differential response of myeloid-derived suppressor cells to the nonsteroidal anti-inflammatory agent indomethacin in tumor-associated and tumor-free microenvironments
Autor:Blidner, A.G.; Salatino, M.; Mascanfroni, I.D.; Diament, M.J.; De Kier Joffé, E.B.; Jasnis, M.A.; Klein, S.M.; Rabinovich, G.A.
Filiación:Área Investigación, Instituto de Oncología Ángel H. Roffo, Universidad de Buenos Aires, Buenos Aires, C1427, Argentina
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1428, Argentina
Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428, Argentina
Palabras clave:arginase; indometacin; nitric oxide; reactive oxygen metabolite; indometacin; nitric oxide; nonsteroid antiinflammatory agent; reactive oxygen metabolite; animal cell; animal experiment; animal model; animal tissue; antiinflammatory activity; antineoplastic activity; Article; bone marrow cell; cancer inhibition; CD8+ T lymphocyte; cell differentiation; cellular parameters; controlled study; correlational study; enzyme activity; female; immune deficiency; lung adenocarcinoma; mouse; nonhuman; priority journal; protein expression; suppressor cell; tumor free microenvironment; tumor microenvironment; tumor volume; animal; autoimmunity; biological model; bone marrow cell; disease model; drug effects; experimental autoimmune encephalomyelitis; immunology; immunophenotyping; metabolism; neoplasm; pathology; phenotype; signal transduction; T lymphocyte subpopulation; tumor microenvironment; Animals; Anti-Inflammatory Agents, Non-Steroidal; Autoimmunity; Cellular Microenvironment; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Female; Immunophenotyping; Indomethacin; Mice; Models, Biological; Myeloid Cells; Neoplasms; Nitric Oxide; Phenotype; Reactive Oxygen Species; Signal Transduction; T-Lymphocyte Subsets; Tumor Burden; Tumor Microenvironment
Año:2015
Volumen:194
Número:7
Página de inicio:3452
Página de fin:3462
DOI: http://dx.doi.org/10.4049/jimmunol.1401144
Título revista:Journal of Immunology
Título revista abreviado:J. Immunol.
ISSN:00221767
CODEN:JOIMA
CAS:arginase, 9000-96-8; indometacin, 53-86-1, 74252-25-8, 7681-54-1; nitric oxide, 10102-43-9; Anti-Inflammatory Agents, Non-Steroidal; Indomethacin; Nitric Oxide; Reactive Oxygen Species
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221767_v194_n7_p3452_Blidner

Referencias:

  • Coussens, L.M., Zitvogel, L., Palucka, A.K., Neutralizing tumor-promoting chronic inflammation: A magic bullet? (2013) Science, 339, pp. 286-291
  • Ostrand-Rosenberg, S., Sinha, P., Beury, D.W., Clements, V.K., Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression (2012) Semin. Cancer Biol., 22, pp. 275-281
  • Serafini, P., Carbley, R., Noonan, K.A., Tan, G., Bronte, V., Borrello, I., High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells (2004) Cancer Res., 64, pp. 6337-6343
  • Gabrilovich, D.I., Nagaraj, S., Myeloid-derived suppressor cells as regulators of the immune system (2009) Nat. Rev. Immunol., 9, pp. 162-174
  • Cuenca, A.G., Delano, M.J., Kelly-Scumpia, K.M., Moreno, C., Scumpia, P.O., Laface, D.M., Heyworth, P.G., Moldawer, L.L., A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma (2011) Mol. Med., 17, pp. 281-292
  • Ostrand-Rosenberg, S., Myeloid-derived suppressor cells: More mechanisms for inhibiting antitumor immunity (2010) Cancer Immunol. Immunother., 59, pp. 1593-1600
  • Srivastava, M.K., Zhu, L., Harris-White, M., Kar, U.K., Huang, M., Johnson, M.F., Lee, J.M., Sharma, S., Myeloid suppressor cell depletion augments antitumor activity in lung cancer (2012) PLoS ONE, 7, p. e40677
  • Yang, L., DeBusk, L.M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., Matrisian, L.M., Lin, P.C., Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis (2004) Cancer Cell, 6, pp. 409-421
  • Rodríguez, P.C., Ochoa, A.C., Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: Mechanisms and therapeutic perspectives (2008) Immunol. Rev., 222, pp. 180-191
  • Ohki, S., Shibata, M., Gonda, K., Machida, T., Shimura, T., Nakamura, I., Ohtake, T., Takenoshita, S., Circulating myeloid-derived suppressor cells are increased and correlate to immune suppression, inflammation and hypoproteinemia in patients with cancer (2012) Oncol. Rep., 28, pp. 453-458
  • Lechner, M.G., Liebertz, D.J., Epstein, A.L., Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells (2010) J. Immunol., 185, pp. 2273-2284
  • Gabrilovich, D.I., Ostrand-Rosenberg, S., Bronte, V., Coordinated regulation of myeloid cells by tumours (2012) Nat. Rev. Immunol., 12, pp. 253-268
  • Kusmartsev, S., Nefedova, Y., Yoder, D., Gabrilovich, D.I., Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species (2004) J. Immunol., 172, pp. 989-999
  • Cobbs, C.S., Whisenhunt, T.R., Wesemann, D.R., Harkins, L.E., Van Meir, E.G., Samanta, M., Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells (2003) Cancer Res., 63, pp. 8670-8673
  • Bingisser, R.M., Tilbrook, P.A., Holt, P.G., Kees, U.R., Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway (1998) J. Immunol., 160, pp. 5729-5734
  • Delano, M.J., Scumpia, P.O., Weinstein, J.S., Coco, D., Nagaraj, S., Kelly-Scumpia, K.M., O'Malley, K.A., Al-Quran, S.Z., MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis (2007) J. Exp. Med., 204, pp. 1463-1474
  • Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M.P., Basso, G., Zanovello, P., Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells (2006) J. Clin. Invest., 116, pp. 2777-2790
  • Chennamaneni, S., Zhong, B., Lama, R., Su, B., COX inhibitors Indomethacin and Sulindac derivatives as antiproliferative agents: Synthesis, biological evaluation, and mechanism investigation (2012) Eur. J. Med. Chem., 56, pp. 17-29
  • Rao, P., Knaus, E.E., Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): Cyclooxygenase (COX) inhibition and beyond (2008) J. Pharm. Pharm. Sci., 11, pp. 81s-110s
  • Thun, M.J., Henley, S.J., Patrono, C., Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues (2002) J. Natl. Cancer Inst., 94, pp. 252-266
  • Sinha, P., Clements, V.K., Fulton, A.M., Ostrand-Rosenberg, S., Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells (2007) Cancer Res., 67, pp. 4507-4513
  • Eli, Y., Przedecki, F., Levin, G., Kariv, N., Raz, A., Comparative effects of indomethacin on cell proliferation and cell cycle progression in tumor cells grown in vitro and in vivo (2001) Biochem. Pharmacol., 61, pp. 565-571
  • Urtreger, A.J., Diament, M.J., Ranuncolo, S.M., Del, M., Vidal, C., Puricelli, L.I., Klein, S.M., De Kier Joffe, E.D., New murine cell line derived from a spontaneous lung tumor induces paraneoplastic syndromes (2001) Int. J. Oncol., 18, pp. 639-647
  • Peluffo, G.D., Stillitani, I., Rodríguez, V.A., Diament, M.J., Klein, S.M., Reduction of tumor progression and paraneoplastic syndrome development in murine lung adenocarcinoma by nonsteroidal antiinflammatory drugs (2004) Int. J. Cancer, 110, pp. 825-830
  • Munder, M., Eichmann, K., Modolell, M., Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: Competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype (1998) J. Immunol., 160, pp. 5347-5354
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Toscano, M.A., Ilarregui, J.M., Bravo, A., Mordoh, J., Rabinovich, G.A., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5, pp. 241-251
  • Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernandez, S.F., Bassil, R., Delacour, D., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity, 37, pp. 249-263
  • Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids (1982) Anal. Biochem., 126, pp. 131-138
  • Rodríguez, P.C., Quiceno, D.G., Zabaleta, J., Ortiz, B., Zea, A.H., Piazuelo, M.B., Delgado, A., Sotomayor, E.M., Arginase I production in the tumor microenvironment by mature myeloid cells inhibits Tcell receptor expression and antigen-specific T-cell responses (2004) Cancer Res., 64, pp. 5839-5849
  • Parma, M., Diament, M., García, C., Piccinni, E., Mondelo, N., Klein, S., Mechanisms of paraneoplastic syndromes in mice bearing a spontaneous lung adenocarcinoma (1999) Tumour Biol., 20, pp. 304-311
  • Bunt, S.K., Sinha, P., Clements, V.K., Leips, J., Ostrand-Rosenberg, S., Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression (2006) J. Immunol., 176, pp. 284-290
  • Rodriguez, P.C., Zea, A.H., Culotta, K.S., Zabaleta, J., Ochoa, J.B., Ochoa, A.C., Regulation of T cell receptor CD3zeta chain expression by L-arginine (2002) J. Biol. Chem., 277, pp. 21123-21129
  • Cuervo, H., Guerrero, N.A., Carbajosa, S., Beschin, A., De Baetselier, P., Gironès, N., Fresno, M., Myeloid-derived suppressor cells infiltrate the heart in acute Trypanosoma cruzi infection (2011) J. Immunol., 187, pp. 2656-2665
  • Raychaudhuri, B., Rayman, P., Ireland, J., Ko, J., Rini, B., Borden, E.C., Garcia, J., Finke, J., Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma (2011) Neurooncol., 13, pp. 591-599
  • Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., Ugel, S., Falisi, E., Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor (2010) Immunity, 32, pp. 790-802
  • Sica, A., Bronte, V., Altered macrophage differentiation and immune dysfunction in tumor development (2007) J. Clin. Invest., 117, pp. 1155-1166
  • Rabinovich, G.A., Gabrilovich, D., Sotomayor, E.M., Immunosuppressive strategies that are mediated by tumor cells (2007) Annu. Rev. Immunol., 25, pp. 267-296
  • Song, Z., Guo, C., Li, Y., Tan, B., Fan, L., Xiao, J., Enhanced antitumor effects of a dendritic cell vaccine transfected with gastric cancer cell total RNA carrying the 4-1BBL gene in vitro (2012) Exp Ther Med, 3, pp. 319-323
  • Jukić, M.K., Luetić, A.T., Skudar-Lukinović, V., Andreis, I., The antimetastatic effect of macrophages restored by indomethacin: Concomitant tumor immunity model (2010) Coll. Antropol., 34, pp. 899-904
  • Suzuki, E., Kapoor, V., Jassar, A.S., Kaiser, L.R., Albelda, S.M., Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity (2005) Clin. Cancer Res., 11, pp. 6713-6721
  • Nowak, A.K., Robinson, B.W., Lake, R.A., Gemcitabine exerts a selective effect on the humoral immune response: Implications for combination chemo-immunotherapy (2002) Cancer Res., 62, pp. 2353-2358
  • Ko, J.S., Zea, A.H., Rini, B.I., Ireland, J.L., Elson, P., Cohen, P., Golshayan, A., Garcia, J., Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients (2009) Clin. Cancer Res., 15, pp. 2148-2157
  • Biswas, S.K., Mantovani, A., Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm (2010) Nat. Immunol., 11, pp. 889-896
  • Rolny, C., Mazzone, M., Tugues, S., Laoui, D., Johansson, I., Coulon, C., Squadrito, M.L., Knevels, E., HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF (2011) Cancer Cell, 19, pp. 31-44
  • Sica, A., Larghi, P., Mancino, A., Rubino, L., Porta, C., Totaro, M.G., Rimoldi, M., Mantovani, A., Macrophage polarization in tumour progression (2008) Semin. Cancer Biol., 18, pp. 349-355
  • Dolcetti, L., Peranzoni, E., Ugel, S., Marigo, I., Fernandez Gomez, A., Mesa, C., Geilich, M., Casati, A., Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF (2010) Eur. J. Immunol., 40, pp. 22-35
  • Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S., Bronte, V., Myeloid-derived suppressor cell heterogeneity and subset definition (2010) Curr. Opin. Immunol., 22, pp. 238-244
  • Curry, J.M., Besmer, D.M., Lopamudra, D.R., Priyanka, G., Sritama, N., Rao, S., Mukherjee, P., Combinational treatment with MUC1 vaccine and Indomethacin reduces breast tumor burden via a COX-independent pathway (2013) Cancer Res., 73, p. 475. , [abstract]
  • Elkabets, M., Ribeiro, V.S., Dinarello, C.A., Ostrand-Rosenberg, S., Di Santo, J.P., Apte, R.N., Vosshenrich, C.A., IL-1β regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function (2010) Eur. J. Immunol., 40, pp. 3347-3357
  • Bunt, S.K., Clements, V.K., Hanson, E.M., Sinha, P., Ostrand-Rosenberg, S., Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4 (2009) J. Leukoc. Biol., 85, pp. 996-1004
  • Bunt, S.K., Yang, L., Sinha, P., Clements, V.K., Leips, J., Ostrand-Rosenberg, S., Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression (2007) Cancer Res., 67, pp. 10019-10026
  • Diament, M.J., Garcìa, C., Stillitani, I., Saavedra, V.M., Manzur, T., Vauthay, L., Klein, S., Spontaneous murine lung adenocarcinoma (P07): A new experimental model to study paraneoplastic syndromes of lung cancer (1998) Int. J. Mol. Med., 2, pp. 45-50

Citas:

---------- APA ----------
Blidner, A.G., Salatino, M., Mascanfroni, I.D., Diament, M.J., De Kier Joffé, E.B., Jasnis, M.A., Klein, S.M.,..., Rabinovich, G.A. (2015) . Differential response of myeloid-derived suppressor cells to the nonsteroidal anti-inflammatory agent indomethacin in tumor-associated and tumor-free microenvironments. Journal of Immunology, 194(7), 3452-3462.
http://dx.doi.org/10.4049/jimmunol.1401144
---------- CHICAGO ----------
Blidner, A.G., Salatino, M., Mascanfroni, I.D., Diament, M.J., De Kier Joffé, E.B., Jasnis, M.A., et al. "Differential response of myeloid-derived suppressor cells to the nonsteroidal anti-inflammatory agent indomethacin in tumor-associated and tumor-free microenvironments" . Journal of Immunology 194, no. 7 (2015) : 3452-3462.
http://dx.doi.org/10.4049/jimmunol.1401144
---------- MLA ----------
Blidner, A.G., Salatino, M., Mascanfroni, I.D., Diament, M.J., De Kier Joffé, E.B., Jasnis, M.A., et al. "Differential response of myeloid-derived suppressor cells to the nonsteroidal anti-inflammatory agent indomethacin in tumor-associated and tumor-free microenvironments" . Journal of Immunology, vol. 194, no. 7, 2015, pp. 3452-3462.
http://dx.doi.org/10.4049/jimmunol.1401144
---------- VANCOUVER ----------
Blidner, A.G., Salatino, M., Mascanfroni, I.D., Diament, M.J., De Kier Joffé, E.B., Jasnis, M.A., et al. Differential response of myeloid-derived suppressor cells to the nonsteroidal anti-inflammatory agent indomethacin in tumor-associated and tumor-free microenvironments. J. Immunol. 2015;194(7):3452-3462.
http://dx.doi.org/10.4049/jimmunol.1401144