Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The thermal stability of enzyme invertase in reduced-moisture model systems of maltodextrin (MD), polyvinylpyrrolidone (PVP; MW 40,000) and trehalose heated at 90°C was studied. Significant invertase inactivation was observed in heated glassy PVP and MD systems kept well below their glass transition temperature (T(g)), but the enzyme was fairly stable in rubbery trehalose systems. However, at moisture contents which allowed trehalose crystallization rapid thermal inactivation of invertase was observed. Invertase inactivation in heated PVP, MD and trehalose systems of reduced-moisture could not be predicted on the basis of glass transition and this was particularly true for trehalose. Conditions which would allow collapse of the systems and crystallization of trehalose were fairly well predicted based oil the estimated T(g) of model systems.

Registro:

Documento: Artículo
Título:Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy state and trehalose crystallization
Autor:Cardona, S.; Schebor, C.; Buera, M.P.; Karel, M.; Chirife, J.
Filiación:Depto. de Industrias, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires, (1428) Buenos Aires, Argentina
CONICET, Argentina
Dept. of Food Sciences, Center for Advanced Food Technology, Rutgers Univ., New Brunswick, NJ 08903, United States
Palabras clave:Crystallization; Glass transition; Invertase; Thermal inactivation; Trehalose
Año:1997
Volumen:62
Número:1
Página de inicio:105
Página de fin:112
DOI: http://dx.doi.org/10.1111/j.1365-2621.1997.tb04378.x
Título revista:Journal of Food Science
Título revista abreviado:J. FOOD. SCI.
ISSN:00221147
CODEN:JFDSA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221147_v62_n1_p105_Cardona

Referencias:

  • Arvanitoyannis, I., Blanshard, J.M.V., Rates of crystallization of dried lactose-sucrose mixtures (1994) J. Food Sci., 59, pp. 197-205
  • Bell, L.N., Hageman, M.J., Differentiating between the effects of water activity and glass transition dependent mobility on a solid state chemical reaction: Aspartame degradation (1994) J. Agric. Food Chem., 42, pp. 2398-2401
  • Buera, M.P., Levi, G., Karel, M., Glass transition in poly-(vinyl)pyrrolidone: Effect of molecular weight and diluents (1992) Biotechnol. Progress, 8, pp. 144-148
  • Buera, M.P., Karel, M., Application of the WLF equation to describe the combined effect of moisture and temperature on nonenzymatic browning rates in food systems (1993) J. Food Proc. Pres., 17, pp. 31-45
  • Buera, M.P., Chirife, J., Karel, M., A study of acid catalyzed sucrose hydrolysis in an amorphous polymeric matrix at reduced moisture content (1995) Food Res. Intern., 28, pp. 359-365
  • Carpenter, J.F., Crowe, J.H., An infrared spectroscopic study of the interactions of carbohydrates with dried proteins (1989) Biochemistry, 28, pp. 3916-3922
  • Chuy, L.E., Labuza, T.P., Caking and stickiness of dairy-based food powders as related to glass transition (1994) J. Food Sci., 59, pp. 43-46
  • Colaco, C., Sen, S., Thangavelu, M., Pinder, S., Roser, B., Extraordinary stability of enzymes dried in trehalose: Simplified molecular biology (1992) Bio/Technology, 10, pp. 1007-1010
  • De Graaf, E.M., Makeda, H., Cocero, A.M., Kokini, J.L., Determination of the effect of moisture on gliadin glass transition using mechanical spectrometry and differential scanning calorimetry (1993) Biotecnnol. Progress, 9, pp. 210-213
  • Donnamaria, M.C., Howard, E.I., Grigera, R., Interaction of water with α,α-trehalose in solution: Molecular dynamics simulation approach (1994) J. Chem. Soc. Faraday Trans., 90, pp. 2731-2735
  • Franks, F., Solid aqueous solutions (1993) Pure & Aplied Chem., 65, pp. 2527-2537
  • Gren, J.L., Angell, C.A., Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly (1989) J. Phys. Chem., 93, pp. 2880-2882
  • Hori, T., Fujita, I., Shimizu, T., Diffusion of disperse dyes into Nylon 6 above and below the glass-transition temperature (1986) JSDC, 102, pp. 181-185
  • Hoseney, R.C., Zeleznak, K., Lai, C.S., Wheat gluten: A glassy Polymer (1986) Cereal Chem., 63, pp. 285-286
  • Jouppila, K., Roos, Y.H., Glass transitions and crystallization in milk powders (1994) J. Dairy Sci., 77, pp. 2907-2915
  • Kalichevsky, M.T., Blanshard, J.M.V., Marsch, R.D.L., Effect of water content and sugars on the glass transition of casein and sodium casinate (1993) Int. J. Food Sci. Technol., 28, pp. 139-151
  • Karmas, R., (1994) The Effect of Glass Transition on Non-enzymatic Browning in Dehydrated Food Systems, , Doctor of philosophy thesis, Rutgers - The State Univ. of New Jersey, New Brunswick, NJ
  • Karmas, R., Buera, M.P., Karel, M., Effect of glass transitions on rates of nonenzymatic browning in food systems (1992) J. Agric. Food Chem., 40, pp. 873-879
  • Koster, K.L., Glass formation and desiccation tolerance in seeds (1990) Plant Physiol., 96, pp. 302-304
  • Kovarskii, A.L., Placek, J., Szocs, F., Study of rotational mobility of stable nitroxide radicals in solid polymers (1978) Polymer, 19, pp. 1137-1141
  • Leslie, S.B., Israeli, E., Lighthart, B., Crowe, J.H., Crowe, L.M., Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying (1995) Appl. and Environm. Microbiology, 61, pp. 3592-3597
  • Levine, H., Slade, L., Glass transitions in foods (1992) Physical Chemistry of Foods, pp. 83-221. , H.G. Schwarteberg and R.W. Hartel (Ed.), Marcel Dekker, New York
  • Levine, H., Slade, L., Another view of trehalose for drying and stabilizing biological materials (1992) BioPharm, 5, pp. 36-40
  • Mugnier, J., Jung, G., Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels (1985) Appl. & Env. Microbiol., 50, pp. 108-114
  • Multon, J.L., Guilbot, A., Water activity in relation to the thermal inactivation of enzymic proteins (1975) Water Relations of Foods, pp. 379-396. , R.B. Duckworth (Ed.), Academic Press, New York
  • Nelson, K.A., (1993) Reaction Kinetics of Food Stability: Comparison of Glass Transition and Classical Models for Temperature and Moisture Dependence, , Doctor of Philosophy thesis, Univ. of Minnesota St. Paul
  • Noel, T.R., Parker, R., Ring, S.G., Kinetic processes in highly viscous aqueous carbohydrate liquids (1994) Food Macromolecules and Colloids, pp. 543-551. , E. Dickenson and D. Lorient (Ed.), Pub. by the Royal Soc. Of Chem., Cambridge, UK
  • Palumbo, M.S., Smith, P.W., Strange, E.D., Van Hekken, D.L., Tunick, M.H., Holsinger, V.H., Stability of β-galactosidase from Aspergillus oryzae and Kluyveromyces lactis in dry milk powders (1995) J. Food Sci., 60, pp. 117-119
  • Resnik, S.L., Chirife, J., Proposed theoretical literature values at various temperatures for selected solutions to be used as reference sources in the range of microbial growth (1988) J. Food Protection, 51, pp. 419-423
  • Roos, Y., Melting and glass transitions of low molecular weight carbohydrates (1993) Carbohydrate Res., 238, pp. 39-48
  • Roos, Y., (1995) Phase Transitions in Foods, , Academic Press, New York
  • Roos, Y., Karel, M., Differential scanning calorimetry study of phase transitions affecting the quality of dehydrated materials (1990) Biotechnol. Progress, 6, pp. 159-163
  • Roos, Y., Karel, M., Plasticizing effect of water on thermal behavior and crystallization of amorphous food models (1991) J. Food Sci., 34, pp. 324-329
  • Roos, Y., Karel, M., Phase transitions of mixtures of amorphous polysaccharides and sugars (1991) Biotechnology Progress, 7, pp. 49-53
  • Roos, Y., Karel, M., Crystallization of amorphous lactose (1992) J. Food Sci., 57, pp. 775-777
  • Roser, B.J., Trehalose drying: A novel replacement for freeze-drying (1991) Biopharm., 5, pp. 44-53
  • Schebor, C., Buera, M.P., Chirife, J., Glassy state in relation to the thermal inactivation of enzyme invertase in amorphous dried matrices of trehalose, maltodextrin and PVP (1996) J. Food Engng., , In press
  • Simatos, D., Blond, G., Perez, J., Basic physical aspects of glass transition (1995) Food Preservation by Moisture Control, pp. 3-31. , G.V. Barbosa-Cánovas and J. Welti-Chanes (Ed.), Technomic Pub. Co., Lancaster, PA
  • Slade, L., Levine, H., Structural stability of intermediate moisture foods. A new understanding (1987) Food Structure-Its Creation and Evaluation, pp. 115-147. , J.R. Mitchell and J.M.V. Blanshard (Ed.), Butterworths, London
  • Slade, L., Levine, H., A food polymer science approach to structure-property relationships in aqueous food systems: Nonequilibrium behavior of carbohydrate-water systems (1991) Water Relationships in Foods, pp. 29-101. , H. Levine and L. Slade (Ed.), Plenum Press, New York
  • Slade, L., Levine, H., Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety (1991) Crit. Rev. Food Sci. & Nutr., 30, pp. 115-360
  • Slade, L., Levine, H., Glass transitions and water-food structure interactions (1994) Advances in Food and Nutrition Research, 38. , J.E. Kinsella (Ed.), Academic Press, San Diego
  • Sun, W.Q., Leopold, C., Glassy state and seed storage stability: A viability equation analysis (1994) Annals of Botany, 74, pp. 601-604
  • Uritani, M., Takai, M., Yoshinaga, K., Protective effect of disaccharides on restriction endonucleases during drying under vacuum (1995) J. Biochem., 117, pp. 774-779
  • Whitaker, J.R., Enzyme action in aqueous systems with special emphasis on intermediate and high moisture foods (1995) Food Preservation by Moisture Control, pp. 255-277. , G.V. Barbosa-Cánovas and J. Welti-Chanes (Ed.), Technomic Pub. Co., Inc., Lancaster, PA
  • Williams, M.L., Landel, R.F., Ferry, J.D., The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids (1955) J. Am. Chem. Soc., 77, pp. 3701-3707

Citas:

---------- APA ----------
Cardona, S., Schebor, C., Buera, M.P., Karel, M. & Chirife, J. (1997) . Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy state and trehalose crystallization. Journal of Food Science, 62(1), 105-112.
http://dx.doi.org/10.1111/j.1365-2621.1997.tb04378.x
---------- CHICAGO ----------
Cardona, S., Schebor, C., Buera, M.P., Karel, M., Chirife, J. "Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy state and trehalose crystallization" . Journal of Food Science 62, no. 1 (1997) : 105-112.
http://dx.doi.org/10.1111/j.1365-2621.1997.tb04378.x
---------- MLA ----------
Cardona, S., Schebor, C., Buera, M.P., Karel, M., Chirife, J. "Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy state and trehalose crystallization" . Journal of Food Science, vol. 62, no. 1, 1997, pp. 105-112.
http://dx.doi.org/10.1111/j.1365-2621.1997.tb04378.x
---------- VANCOUVER ----------
Cardona, S., Schebor, C., Buera, M.P., Karel, M., Chirife, J. Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy state and trehalose crystallization. J. FOOD. SCI. 1997;62(1):105-112.
http://dx.doi.org/10.1111/j.1365-2621.1997.tb04378.x