Artículo

Leskow, C.C.; Kamenetzky, L.; Dominguez, P.G.; Díaz Zirpolo, J.A.; Obata, T.; Costa, H.; Martí, M.; Taboga, O.; Keurentjes, J.; Sulpice, R.; Ishihara, H.; Stitt, M.; Fernie, A.R.; Carrari, F. "Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development" (2016) Journal of Experimental Botany. 67(14):4091-4103
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Improving carbon fixation in order to enhance crop yield is a major goal in plant sciences. By quantitative trait locus (QTL) mapping, it has been demonstrated that a vacuolar invertase (vac-Inv) plays a key role in determining the radical length in Arabidopsis. In this model, variation in vac-Inv activity was detected in a near isogenic line (NIL) population derived from a cross between two divergent accessions: Landsberg erecta (Ler) and Cape Verde Island (CVI), with the CVI allele conferring both higher Inv activity and longer radicles. The aim of the current work is to understand the mechanism(s) underlying this QTL by analyzing structural and functional differences of vac-Inv from both accessions. Relative transcript abundance analyzed by quantitative real-time PCR (qRT-PCR) showed similar expression patterns in both accessions; however, DNA sequence analyses revealed several polymorphisms that lead to changes in the corresponding protein sequence. Moreover, activity assays revealed higher vac-Inv activity in genotypes carrying the CVI allele than in those carrying the Ler allele. Analyses of purified recombinant proteins showed a similar K m for both alleles and a slightly higher V max for that of Ler. Treatment of plant extracts with foaming to release possible interacting Inv inhibitory protein(s) led to a large increase in activity for the Ler allele, but no changes for genotypes carrying the CVI allele. qRT-PCR analyses of two vac-Inv inhibitors in seedlings from parental and NIL genotypes revealed different expression patterns. Taken together, these results demonstrate that the vac-Inv QTL affects root biomass accumulation and also carbon partitioning through a differential regulation of vac-Inv inhibitors at the mRNA level. © 2016 The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved.

Registro:

Documento: Artículo
Título:Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development
Autor:Leskow, C.C.; Kamenetzky, L.; Dominguez, P.G.; Díaz Zirpolo, J.A.; Obata, T.; Costa, H.; Martí, M.; Taboga, O.; Keurentjes, J.; Sulpice, R.; Ishihara, H.; Stitt, M.; Fernie, A.R.; Carrari, F.
Filiación:Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, Castelar, B1712WAA, Argentina
Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, 6700, Argentina
Departamento de Química Biológica and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Laboratory of Genetics, Wageningen University, Netherlands
National University of Ireland, Galway, Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Botany and Plant Science, Galway, Ireland
Palabras clave:Arabidopsis; Biomass; Inhibitor; Near isogenic line; Quantitative trait loci; Vacuolar invertase; Arabidopsis protein; beta fructofuranosidase; vacuolar invertase, Arabidopsis; allele; Arabidopsis; cell vacuole; DNA sequence; enzymology; gene expression regulation; genetics; growth, development and aging; physiology; protein conformation; quantitative trait locus; real time polymerase chain reaction; seedling; Alleles; Arabidopsis; Arabidopsis Proteins; beta-Fructofuranosidase; Gene Expression Regulation, Plant; Protein Conformation; Quantitative Trait Loci; Real-Time Polymerase Chain Reaction; Seedlings; Sequence Analysis, DNA; Vacuoles
Año:2016
Volumen:67
Número:14
Página de inicio:4091
Página de fin:4103
DOI: http://dx.doi.org/10.1093/jxb/erw185
Título revista:Journal of Experimental Botany
Título revista abreviado:J. Exp. Bot.
ISSN:00220957
CODEN:JEBOA
CAS:beta fructofuranosidase, 9001-57-4; Arabidopsis Proteins; beta-Fructofuranosidase; vacuolar invertase, Arabidopsis
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220957_v67_n14_p4091_Leskow

Referencias:

  • Andersen, M.N., Asch, F., Wu, Y., Jensen, C.R., Naested, H., Mogensen, V.O., Koch, K.E., Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize (2002) Plant Physiology, 130, pp. 591-604
  • Barratt, D.H., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., Feil, R., Smith, A.M., Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase (2009) Proceedings of the National Academy of Sciences, USA, 106, pp. 13124-13129
  • Bracho, G.E., Whitaker, J.R., Characteristics of the inhibition of potato (Solanum tuberosum) invertase by an endogenous proteinaceous inhibitor in potatoes (1990) Plant Physiology, 92, pp. 381-385
  • Bracho, G.E., Whitaker, J.R., Purification and partial characterization of potato (Solanum tuberosum) invertase and its endogenous proteinaceous inhibitor (1990) Plant Physiology, 92, pp. 386-394
  • Brummell, D.A., Chen, R.K., Harris, J.C., Zhang, H., Hamiaux, C., Kralicek, A.V., McKenzie, M.J., Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants (2011) Journal of Experimental Botany, 62, pp. 3519-3534
  • Carrari, F., Frankel, N., Lijavetzky, D., Benech-Arnold, R., Sánchez, R., Iusem, N.D., The TATA-less promoter of VP1, a plant gene controlling seed germination (2001) DNA Sequence, 12, pp. 107-114
  • Cheng, W.H., Taliercio, E.W., Chourey, P.S., The miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel (1996) The Plant Cell, 8, pp. 971-983
  • Chiou, T.J., Bush, D.R., Sucrose is a signal molecule in assimilate partitioning (1998) Proceedings of the National Academy of Sciences, USA, 95, pp. 4784-4788
  • Dellaporta, S.L., Wood, J., Hicks, J.B., A plant DNA minipreparation: Version 2 (1983) Plant Molecular Biology Reporter, 1, pp. 19-21
  • Draffehn, A.M., Durek, P., Nunes-Nesi, A., Stich, B., Fernie, A.R., Gebhardt, C., Tapping natural variation at functional level reveals allele specific molecular 1 characteristics of potato invertase Pain-1 (2015) Plant, Cell and Environment, 35, pp. 2143-2154
  • Fernie, A.R., Roessner, U., Geigenberger, P., The sucrose analog palatinose leads to a stimulation of sucrose degradation and starch synthesis when supplied to discs of growing potato tubers (2001) Plant Physiology, 125, pp. 1967-1977
  • Fridman, E., Carrari, F., Liu, Y.S., Fernie, A.R., Zamir, D., Zooming in on a quantitative trait for tomato yield using interspecific introgressions (2004) Science, 305, pp. 1786-1789
  • Friso, G., Van Wijk, K.J., Posttranslational protein modifications in plant metabolism (2015) Plant Physiology, 169, pp. 1469-1487
  • Goetz, M., Roitsch, T., The different pH optima and substrate specificities of extracellular and vacuolar invertases from plants are determined by a single amino-acid substitution (1999) The Plant Journal, 20, pp. 707-711
  • Greiner, S., Krausgrill, S., Rausch, T., Cloning of a tobacco apoplasmic invertase inhibitor (1998) Plant Physiology, 116, pp. 733-742
  • Haouazine-Takvorian, N., Tymowska-Lalanne, Z., Takvorian, A., Tregear, J., Lejeune, B., Lecharny, A., Kreis, M., Characterization of two members of the Arabidopsis thaliana gene family, at beta fruct3 and at beta fruct4, coding for vacuolar invertases (1997) Gene, 197, pp. 239-251
  • Hothorn, M., Vanden Ende, W., Lammens, W., Rybin, V., Scheffzek, K., Structural insights into the pH-controlled targeting of plant cellwall invertase by a specific inhibitor protein (2010) Proceedings of the National Academy of Sciences, USA, 107, pp. 17427-17432
  • Hothorn, M., Wolf, S., Aloy, P., Greiner, S., Scheffzek, K., Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins (2004) The Plant Cell, 16, pp. 3437-3447
  • Huang, L.F., (2006) Molecular Analysis of An Acid Invertase Gene Family in Arabidopsis, , PhD thesis, University of Florida
  • Husain, S.E., Thomas, B.J., Kingston-Smith, A.H., Foyer, C.H., Invertase protein, but not activity, is present throughout development of Lycopersicon esculentum and L pimpinellifolium fruit (2001) New Phytologist, 150, pp. 73-81
  • Jin, Y., Ni, D.A., Ruan, Y.L., Post translational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level (2009) The Plant Cell, 21, pp. 2072-2089
  • Jung, C., Lee, G.J., Jang, M., Lee, M., Lee, J., Kang, H., Sohn, E.J., Hwang, I., Identification of sorting motifs of atβfruct4 for trafficking from the ER to the vacuole through the Golgi and PVC (2011) Traffic, 12, pp. 1774-1792
  • Keurentjes, J.J.B., (2007) Genetical Genomics in Arabidopsis: From Natural Variation to Regulatory Networks, , PhD thesis, University of Wageningen, The Netherlands
  • Keurentjes, J.J.B., Bentsink, L., Alonso-Blanco, C., Hanhart, C.J., Blankestijn-Vries, H., Effgen, S., Vreugdenhil, D., Koornneef, M., Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population (2007) Genetics, 175, pp. 891-905
  • Klann, E.M., Hall, B., Bennett, A.B., Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit (1996) Plant Physiology, 112, pp. 1321-1330
  • Koch, K.E., Carbohydrate-modulated gene expression in plants (1996) Annual Review of Plant Physiology and Plant Molecular Biology, 47, pp. 509-540
  • Koch, K.E., Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development (2004) Current Opinion in Plant Biology, 7, pp. 235-246
  • Kohorn, B.D., Kobayashi, M., Johansen, S., Friedman, H.P., Fischer, A., Byers, N., Wall-associated kinase 1 (WAK1) is crosslinked in endomembranes, and transport to the cell surface requires correct cellwall synthesis (2006) Journal of Cell Science, 119, pp. 2282-2290
  • Le Roy, K., Lammens, W., Verhaest, M., De Coninck, B., Rabijns, A., Van Laere, A., Vanden Ende, W., Unraveling the difference between invertases and fructan exohydrolases: A single amino acid (ASP-239) substitution transforms Arabidopsis cell wall invertase1 into a fructan 1-exohydrolase (2007) Plant Physiology, 14, pp. 616-625
  • Le Roy, K., Vergauwen, R., Struyf, T., Yuan, S., Lammens, W., Mátrai, J., De Maeyer, M., Vanden Ende, W., Understanding the role of defective invertases in plants: Tobacco Nin88 fails to degrade sucrose (2013) Plant Physiology, 161, pp. 1670-1681
  • Link, M., Rausch, T., Greiner, S., In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles (2004) FEBS Letters, 573, pp. 105-109
  • Lou, Y., Gou, J.Y., Xue, H.W., PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth (2007) The Plant Cell, 19, pp. 163-181
  • Martín, M.L., Lechner, L., Zabaleta, E.J., Salerno, G.L., A mitochondrial alkaline/neutral invertase isoform (A/N-InvC) functions in developmental energy-demanding processes in Arabidopsis (2013) Planta, 237, pp. 813-822
  • McKenzie, M.J., Chen, R.K.Y., Harris, J.C., Ashworth, M.J., Brummelld, A., Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers (2012) Plant, Cell and Environment, 36, pp. 176-185
  • Mitsuhashi, W., Sasaki, S., Kanazawa, A., Yang, Y.Y., Kamiya, Y., Toyomasu, T., Differential expression of acid invertase genes during seed germination in Arabidopsis thaliana (2004) Bioscience, Biotechnology, and Biochemistry, 68, pp. 602-608
  • Pressey, R., Separation and properties of potato invertase and invertase inhibitor (1966) Archives of Biochemistry and Biophysics, 113, pp. 667-674
  • Pressey, R., Invertase inhibitor from potatoes: Purification, characterization, and reactivity with plant invertases (1967) Plant Physiology, 42, pp. 1780-1786
  • Qi, X., Wu, Z., Li, J., Mo, X., Wu, S., Chu, J., Wu, P., AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis (2007) Plant Molecular Biology, 64, pp. 575-587
  • Rausch, T., Greiner, S., Plant protein inhibitors of invertases (2004) Biochimica et Biophysica Acta, 1696, pp. 253-261
  • Reddy, L.V., Metzger, R.J., Ching, T.M., Effect of temperature and seed dormancy on wheat (1985) Crop Science, 25, pp. 455-458
  • Rojo, E., Zouhar, J., Kovaleva, V., Hong, S., Raikhel, N.V., The AtC-VPS protein complex is localized to the tonoplast and the prevacuolar compartment in Arabidopsis (2003) Molecular Biology of the Cell, 14, pp. 361-369
  • Ruan, Y.L., Jin, Y., Huang, J., Capping invertase activity by its inhibitor: Roles and implications in sugar signaling, carbon allocation, senescence and evolution (2009) Plant Signaling and Behavior, 4, pp. 983-985
  • Sergeeva, L.I., Keurentjes, J.J., Bentsink, L., Vonk, J., Vander Plas, L.H., Koornneef, M., Vreugdenhil, D., Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis (2006) Proceedings of the National Academy of Sciences, USA, 103, pp. 2994-2999
  • Sturm, A., Invertases Primary structures, functions and roles in plant development and sucrose partitioning (1999) Plant Physiology, 121, pp. 1-8
  • Su, T., Wolf, S., Han, M., Zhao, H., Wei, H., Greiner, S., Rausch, T., Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth (2015) Plant Molecular Biology, 90, pp. 137-155
  • Sulpice, R., Trenkamp, S., Steinfath, M., Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of Arabidopsis accessions (2010) The Plant Cell, 8, pp. 2872-2893
  • Tang, G.Q., Luscher, M., Sturm, A., Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning (1999) The Plant Cell, 11, pp. 177-189
  • Tang, X., Ruffner, H.P., Scholes, J.D., Rolfe, S.A., Purification and characterization of soluble invertases from leaves of Arabidopsis thaliana (1996) Planta, 198, pp. 17-23
  • Tauzin, A.S., Sulzenbacher, G., Lafond, M., Desseaux, V., Reca, I.B., Perrier, J., Bellincampi, D., Giardina, T., Functional characterization of a vacuolar invertase from Solanum lycopersicum: Posttranslational regulation by N-glycosylation and a proteinaceous inhibitor (2014) Biochimie, 101, pp. 39-49
  • Tymowska-Lalanne, Z., Kreis, M., Expression of the Arabidopsis thaliana invertase gene family (1998) Planta, 207, pp. 255-259
  • Weil, M., Krausgrill, S., Schuster, A., Rausch, T., A 17 kD Nicotiana tabacum cell-wall peptide acts as an in vitro inhibitor of the cell-wall isoform of acid invertase (1994) Planta, 193, pp. 438-445

Citas:

---------- APA ----------
Leskow, C.C., Kamenetzky, L., Dominguez, P.G., Díaz Zirpolo, J.A., Obata, T., Costa, H., Martí, M.,..., Carrari, F. (2016) . Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development. Journal of Experimental Botany, 67(14), 4091-4103.
http://dx.doi.org/10.1093/jxb/erw185
---------- CHICAGO ----------
Leskow, C.C., Kamenetzky, L., Dominguez, P.G., Díaz Zirpolo, J.A., Obata, T., Costa, H., et al. "Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development" . Journal of Experimental Botany 67, no. 14 (2016) : 4091-4103.
http://dx.doi.org/10.1093/jxb/erw185
---------- MLA ----------
Leskow, C.C., Kamenetzky, L., Dominguez, P.G., Díaz Zirpolo, J.A., Obata, T., Costa, H., et al. "Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development" . Journal of Experimental Botany, vol. 67, no. 14, 2016, pp. 4091-4103.
http://dx.doi.org/10.1093/jxb/erw185
---------- VANCOUVER ----------
Leskow, C.C., Kamenetzky, L., Dominguez, P.G., Díaz Zirpolo, J.A., Obata, T., Costa, H., et al. Allelic differences in a vacuolar invertase affect Arabidopsis growth at early plant development. J. Exp. Bot. 2016;67(14):4091-4103.
http://dx.doi.org/10.1093/jxb/erw185