Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm-a morphologically and functionally similar, although genetically different tissue-were highlighted and discussed. © The Author [2013].

Registro:

Documento: Artículo
Título:Programmed cell death during quinoa perisperm development
Autor:López-Fernández, M.P.; Maldonado, S.
Filiación:Departamento de Biodiversidad y Biología Experimenta, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA, Argentina
Palabras clave:Amaranthaceae; basal body; caspase-like protease; DNA fragmentation; endoreduplication; nucleases; perisperm; programmed cell death (PCD); quinoa; starch accumulation; TUNEL.; peptide hydrolase; vegetable protein; Amaranthaceae; apoptosis; article; caspase-like protease; Chenopodium quinoa; cytology; DNA fragmentation; endoreduplication; genetics; kinetosome; metabolism; nucleases; perisperm; physiology; plant seed; programmed cell death (PCD); starch accumulation; TUNEL.; Amaranthaceae; basal body; caspase-like protease; DNA fragmentation; endoreduplication; nucleases; perisperm; programmed cell death (PCD); quinoa; starch accumulation; TUNEL.; Apoptosis; Chenopodium quinoa; DNA Fragmentation; Peptide Hydrolases; Plant Proteins; Seeds
Año:2013
Volumen:64
Número:11
Página de inicio:3313
Página de fin:3325
DOI: http://dx.doi.org/10.1093/jxb/ert170
Título revista:Journal of Experimental Botany
Título revista abreviado:J. Exp. Bot.
ISSN:00220957
CODEN:JEBOA
CAS:Peptide Hydrolases, 3.4.-; Plant Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220957_v64_n11_p3313_LopezFernandez

Referencias:

  • An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III (2009) Botanical Journal of the Linnean Society, 161, pp. 122-127. , APG III
  • Bino, R.J., Lanteri, S., Verhoeven, H.A., Kraak, H.L., Flow cytometric determination of nuclear replication stages in seed tissues (1993) Annals of Botany, 72, pp. 181-187
  • Boesewinkel, F.D., Bouman, F., The seed structure (1984) Embryology of Angiosperms, pp. 567-610. , Johri BM, ed Berlin: Springer-Verlag
  • Borén, M., Höglund, A.-S., Bozhkov, P., Jansson, C., Developmental regulation of a VEIDase caspase-like proteolytic activity in barley caryopsis (2006) Journal of Experimental Botany, 57, pp. 3747-3753
  • Bouman, F., The ovule (1984) Embryology of Angiosperms, pp. 123-157. , Johri BM, ed Berlin: Springer-Verlag
  • Bozhkov, P., Filonova, L.H., Suárez, M.F., Helmersson, A., Smertenko, A.P., Zhivotovsky, B., Von Arnold, S., VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation (2004) Cell Death and Differentiation, 11, pp. 175-182
  • Bozhkov, P., Jansson, C., Autophagy and cell-death proteases in plants (2007) Autophagy, 3, pp. 136-138
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Analytical Biochemistry, 72, pp. 248-254
  • Chang, S.C., Gallie, D.R., RNase activity decreases following a heat shock in wheat leaves and correlates with its posttranslational modification (1997) Plant Physiology, 113, pp. 1253-1263
  • Chen, F., Foolad, M.R., Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration (1997) Plant Molecular Biology, 35, pp. 821-831
  • Coimbra, S., Salema, R., Amaranthus hypochondriacus: Seed structure and localization of seed reserves (1994) Annals of Botany, 74, pp. 373-379
  • Crippen, R.W., Perrier, J.L., The use of neutral red and Evans blue for live-dead determinations of marine plankton (1974) Staining Technology, 49, pp. 97-104
  • D'Amato, F., Role of Polyploidy in Reproductive Organs and Tissues (1984) Embryology of Angiosperms, pp. 519-566. , Johri BM, ed Berlin: Springer
  • Debono, A.G., Greenwood, J.S., Characterization of programmed cell death in the endosperm cells of tomato seed: Two distinct death programs (2006) Canadian Journal of Botany, 84, pp. 791-804
  • De Halac, I.N., Fine structure of nucellar cells during development of the embryo sac in Oenotherabiennis L (1980) Annals of Botany, 45, pp. 515-521
  • Domínguez, F., Cejudo, F.J., Germination related genes encoding proteolytic enzymes are expressed in the nucellus of developing wheat grains (1998) The Plant Journal, 15, pp. 569-574
  • Dominguez, F., Cejudo, F.J., Patterns of starchy endosperm acidification and protease gene expression in wheat grains following germination (1999) Plant Physiology, 119, pp. 81-88
  • Domínguez, F., Cejudo, F.J., Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells (2006) Biochemical Journal, 307, pp. 529-536
  • Domínguez, F., Moreno, J., Cejudo, F.J., The nucellus degenerates by a processs of programmed cell death during the early stages of wheat grain development (2001) Planta, 213, pp. 352-360
  • Domínguez, F., Moreno, J., Cejudo, F.J., A gibberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death (2004) Journal of Biological Chemistry, 279, pp. 11530-11536
  • Domínguez, F., Moreno, J., Cejudo, F.J., The scutellum of germinated wheat grains undergoes programmed cell death: Identification of an acidic nuclease involved in nucleus dismantling (2012) Journal of Experimental Botany, 63, pp. 5475-5485
  • Giuliani, C., Consonni, G., Gavazzi, G., Colombo, M., Dolfini, S., Programmed cell death during embryogenesis in maize (2002) Annals of Botany, 90, pp. 287-292
  • Greenwood, J.S., Helm, M., Gietl, C., Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development (2005) Proceedings of National Academy of Sciences, USA, 102, pp. 2238-2243
  • Gunawardena, A.H., Pearce, D.M., Jackson, M.B., Hawes, C.R., Evans, D.E., Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.) (2001) Planta, 212, pp. 205-214
  • He, X., Kermode, A.R., Nuclease activities and DNA fragmentation during programmed cell death of megagametophyte cells of white spruce (Picea glauca) seeds (2003) Plant Molecular Biology, 51, pp. 509-521
  • Ho, A., Developmental regulation of a VEIDase caspase-like proteolytic activity in barley caryopsis (2006) Access, 57, pp. 3747-3753
  • Jensen, W.A., The composition and ultrastructure of the nucellus in cotton (1975) Journal of Ultrastructural Research, 13, pp. 112-128
  • Joshi, A.C., Kajale, L.B., Fertilization and seed development in Amaranthaceae (1937) Proceedings of the Indian Academy of Sciences, 5, pp. 91-100
  • Kowles, R.V., Srienc, F., Phillips, R.L., Endoreduplication of nuclear DNA in the developing maize endosperm (1990) Developmental Genetics, 11, pp. 125-132
  • Langston, B.J., Bail, S., Jones, M.L., Increase in DNA fragmentation and induction of a senescence-specific nuclease are delayed during corolla senescence in ethylene-insensitive (etr1-1) transgenic petunias (2005) Journal of Experimental Botany, 56, pp. 15-23
  • Mansfield, S.G., Briarty, L.G., Early embryogenesis in Arabidopsis thaliana. II. The developing embryo (1991) Canadian Journal of Botany, 69, pp. 461-476
  • Melaragno, J.E., Mehrotra, B., Coleman, A.W., Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis (1993) The Plant Cell, 5, pp. 1661-1668
  • Meyer, C.A., Genera e Chenopodearum (1829) Flora Altaica, 1, pp. 370-371. , Ledebour CF, ed Berlin: Reimer
  • Norstog, K., Nucellus during early embryogeny in barley: Fine structure (1974) Botanical Gazette, 135, pp. 97-103
  • Otto, F., DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA (1990) Methods in Cell Biology, pp. 105-110. , Crissman HA, Darzynkiewicz Z, eds New York: Academic Press
  • Pal, A., Singh, R.P., Pal, M., Development and structure of seeds in Amaranthus hypochaondriacus L. and its wild progenitor A. hybridus L (1990) Phytomorphology, 40, pp. 145-150
  • Prego, I., Maldonado, S., Otegui, M., Seed structure and localization of reserves in Chenopodium quinoa (1998) Annals of Botany, 82, pp. 481-488
  • Radchuk, V., Weier, D., Radchuk, R., Weschke, W., Weber, H., Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth (2011) Journal of Experimental Botany, 62, pp. 1217-1227
  • Rogers, H.J., Cell death and organ development in plants (2005) Current Topics in Development, 71, pp. 225-261
  • Rotari, V.I., He, R., Gallois, P., Death by proteases in plants: Whodunit (2005) Physiologia Plantarum, 123, pp. 376-385
  • Sabelli, P.A., Larkins, B.A., The development of endosperm in grasses (2012) Plant Physiology, 149, pp. 14-26
  • Sanmartín, M., Jaroszewski, L., Raikhel, N.V., Rojo, E., Caspases. Regulating death since the origin of life (2005) Plant Physiology, 137, pp. 841-847
  • Spanò, C., Buselli, R., Ruffini Castiglione, M., Bottega, S., Grilli, I., RNases and nucleases in embryos and endosperms from naturally aged wheat seeds stored in different conditions (2007) Journal of Plant Physiology, 164, pp. 487-495
  • Thelen, M.P., Northcote, D.H., Identification and purification of a nuclease from Zinnia elegans L. A potential molecular marker for xylogenesis (1989) Planta, 179, pp. 181-195
  • Uren, A.G., O'Rourke, K., Aravind, L., Pisabarro, M.T., Seshagiri, S., Koonin, E.V., Dixit, V.M., Identification of paracaspases and metacaspases: Two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma (2000) Molecular Cell, 6, pp. 961-967
  • Van Doorn, W.G., Beers, E.P., Dangl, J.L., Morphological classification of plant cell deaths (2011) Cell Death and Differentiation, 18, pp. 1241-1246
  • Van Doorn, W.G., Woltering, E.J., Many ways to exit Cell death categories in plants (2005) Trends in Plant Science, 10, pp. 1360-1385
  • Webb, M.C., Gunning, B.E.S., Embryo sac development in Arabidopsis thaliana (1990) Sexual Plant Reproduction, 3, pp. 244-256
  • Werker, E., Seed anatomy (1997) Encyclopedia of Plant Anatomy, 10. , Teil 3. SpeziellerTeil, Berlin: Gebrüder Borntraeger
  • Woltering, E.J., Van Der Bent, A., Hoeberichts, F.A., Do plant caspases exist (2002) Plant Physiology, 130, pp. 1764-1769
  • Young, T.E., Gallie, D.R., Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals (1999) Plant Molecular Biology, 39, pp. 915-926
  • Young, T.E., Gallie, D.R., Programmed cell death during endosperm development (2000) Plant Molecular Biology, 44, pp. 283-301
  • Young, T.E., Gallie, D.R., Demason, D.A., Ethylene mediated programmed cell death during maize endosperm development of Su and sh2 genotypes (1997) Plant Physiology, 115, pp. 737-751
  • Zakeri, Z., Bursch, W., Tenniswood, M., Lokshin, R.A., Cell death: Programmed, apoptosis, necrosis, or other (1995) Cell Death and Differentiation, 2, pp. 87-96

Citas:

---------- APA ----------
López-Fernández, M.P. & Maldonado, S. (2013) . Programmed cell death during quinoa perisperm development. Journal of Experimental Botany, 64(11), 3313-3325.
http://dx.doi.org/10.1093/jxb/ert170
---------- CHICAGO ----------
López-Fernández, M.P., Maldonado, S. "Programmed cell death during quinoa perisperm development" . Journal of Experimental Botany 64, no. 11 (2013) : 3313-3325.
http://dx.doi.org/10.1093/jxb/ert170
---------- MLA ----------
López-Fernández, M.P., Maldonado, S. "Programmed cell death during quinoa perisperm development" . Journal of Experimental Botany, vol. 64, no. 11, 2013, pp. 3313-3325.
http://dx.doi.org/10.1093/jxb/ert170
---------- VANCOUVER ----------
López-Fernández, M.P., Maldonado, S. Programmed cell death during quinoa perisperm development. J. Exp. Bot. 2013;64(11):3313-3325.
http://dx.doi.org/10.1093/jxb/ert170