Artículo

Soto, G.; Stritzler, M.; Lisi, C.; Alleva, K.; Pagano, M.E.; Ardila, F.; Mozzicafreddo, M.; Cuccioloni, M.; Angeletti, M.; Ayub, N.D. "Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation" (2011) Journal of Experimental Botany. 62(15):5699-5711
Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Acetoacetyl-CoA thiolase (EC 2.3.1.9), also called thiolase II, condenses two molecules of acetyl-CoA to give acetoacetyl-CoA. This is the first enzymatic step in the biosynthesis of isoprenoids via mevalonate (MVA). In this work, thiolase II from alfalfa (MsAACT1) was identified and cloned. The enzymatic activity was experimentally demonstrated in planta and in heterologous systems. The condensation reaction by MsAACT1 was proved to be inhibited by CoA suggesting a negative feedback regulation of isoprenoid production. Real-time RT-PCR analysis indicated that MsAACT1 expression is highly increased in roots and leaves under cold and salinity stress. Treatment with mevastatin, a specific inhibitor of the MVA pathway, resulted in a decrease in squalene production, antioxidant activity, and the survival of stressed plants. As expected, the presence of mevastatin did not change chlorophyll and carotenoid levels, isoprenoids synthesized via the plastidial MVA-independent pathway. The addition of vitamin C suppressed the sensitive phenotype of plants challenged with mevastatin, suggesting a critical function of the MVA pathway in abiotic stress-inducible antioxidant defence. MsAACT1 over-expressing transgenic plants showed salinity tolerance comparable with empty vector transformed plants and enhanced production of squalene without altering the 3-hydroxy-3-methylglutaryl- CoA reductase (HMGR) activity in salt-stress conditions. Thus, acetoacetyl-CoA thiolase is a regulatory enzyme in isoprenoid biosynthesis involved in abiotic stress adaptation. © 2011 The Author.

Registro:

Documento: Artículo
Título:Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation
Autor:Soto, G.; Stritzler, M.; Lisi, C.; Alleva, K.; Pagano, M.E.; Ardila, F.; Mozzicafreddo, M.; Cuccioloni, M.; Angeletti, M.; Ayub, N.D.
Filiación:Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los reseros S/N, Castelar C25 (1712), Provincia de Buenos Aires, Argentina
Concejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avda. Rivadavia 1917, C1033AAJ Cuidad Autónoma de Buenos Aires, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
School of Biosciences and Biotechnology, University of Camerino, 62032 Camerino (MC), Italy
Palabras clave:Abiotic stress; acetoacetyl-CoA thiolase; isoprenoid; MVA pathway; thiolase II; acetyl coenzyme A acetyltransferase; mevalonic acid; pravastatin; squalene; vegetable protein; alfalfa; article; drug effect; genetics; metabolism; plant leaf; plant root; real time polymerase chain reaction; signal transduction; transgenic plant; Acetyl-CoA C-Acetyltransferase; Medicago sativa; Mevalonic Acid; Plant Leaves; Plant Proteins; Plant Roots; Plants, Genetically Modified; Pravastatin; Real-Time Polymerase Chain Reaction; Signal Transduction; Squalene
Año:2011
Volumen:62
Número:15
Página de inicio:5699
Página de fin:5711
DOI: http://dx.doi.org/10.1093/jxb/err287
Título revista:Journal of Experimental Botany
Título revista abreviado:J. Exp. Bot.
ISSN:00220957
CODEN:JEBOA
CAS:acetyl coenzyme A acetyltransferase, 9027-46-7; mevalonic acid, 150-97-0; pravastatin, 81093-37-0, 81131-70-6; squalene, 111-02-4, 7683-64-9; Acetyl-CoA C-Acetyltransferase, 2.3.1.9; Mevalonic Acid, 150-97-0; Plant Proteins; Pravastatin, 81093-37-0; Squalene, 111-02-4
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00220957_v62_n15_p5699_Soto.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220957_v62_n15_p5699_Soto

Referencias:

  • Abbasi, A.R., Hajirezaei, M., Hofius, D., Sonnewald, U., Voll, L.M., Specific roles of a-and d-tocopherol in abiotic stress (2007) Plant Physiology, 143, pp. 1720-1738
  • Ahumada, I., Cairo, A., Hemmrlin, A., Gonzalez, V., Pateraki, I., Bach, T.J., Rodriguez-Concepcion, M., Boronat, A., Characterization of the gene family enconding acetoacetyl-CoA thiolase in Arabidopsis (2008) Functional Plant Biology, 35, pp. 1100-1111
  • Aldor, I.S., Keasling, J.D., Process design for microbial plastic factories: Metabolic engineering of polyhydroxyalkanoates (2003) Current Opinion in Biotechnology, 14 (5), pp. 475-483. , DOI 10.1016/j.copbio.2003.09.002
  • Ayub, N.D., Julia Pettinari, M., Mendez, B.S., Lopez, N.I., Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14-3 is due to a defective β-ketothiolase gene (2006) FEMS Microbiology Letters, 264 (1), pp. 125-131. , DOI 10.1111/j.1574-6968.2006.00446.x
  • Ayub, N.D., Pettinari, M.J., Mendez, B.S., Lopez, N.I., The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island (2007) Plasmid, 58 (3), pp. 240-248. , DOI 10.1016/j.plasmid.2007.05.003, PII S0147619X07000741
  • Ayub, N.D., Pettinari, M.J., Ruiz, J.A., Lopez, N.I., A polyhydroxybutyrate-producing Pseudomonas sp. isolated from antarctic environments with high stress resistance (2004) Current Microbiology, 49 (3), pp. 170-174
  • Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low-temperature adaptation (2009) Extremophiles, 13, pp. 59-66
  • Bajda, A., Konopka-Postupolska, D., Krzymowska, M., Role of polyisoprenoids in tobacco resistance against biotic stresses (2009) Physiologia Plantarum, 135, pp. 351-364
  • Baxter, C.J., Redestig, H., Schauer, N., Repsilber, D., Patil, K.R., Nielsen, J., Selbig, J., Sweetlove, L.J., The metabolic response of heterotrophic Arabidopsis cells to oxidative stress (2007) Plant Physiology, 143 (1), pp. 312-325. , DOI 10.1104/pp.106.090431
  • Blum, T., (2009) Computational Approaches for Analyzing Metabolic Pathways, , PhD thesis Eberhard-Karls-Universitä t, Tü bingen
  • Bohmert, K., Balbo, I., Steinbuchel, A., Tischendorf, G., Willmitzer, L., Constitutive expression of the β-ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants (2002) Plant Physiology, 128 (4), pp. 1282-1290. , DOI 10.1104/pp.010615
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Analytical Biochemistry, 72, pp. 248-254
  • Campanella, J.J., Bitincka, L., Smalley, J., MatGAT: AAn application that generates similarity/identity matrices using protein or DNA sequences (2003) BMC Bioinformatics, 4, p. 29
  • Carrie, C., Murcha, M.W., Millar, A.H., Smith, S.M., Whelan, J., Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria (2007) Plant Molecular Biology, 63 (1), pp. 97-108. , DOI 10.1007/s11103-006-9075-1
  • Chappell, J., Wolf, F., Proulx, J., Cuellar, R., Saunders, C., Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? (1995) Plant Physiology, 109 (4), pp. 1337-1343
  • Cook, J.A., Vanderjagt, D.J., Dasgupta, A., Mounkaila, G., Glew, R.S., Blackwell, W., Glew, R.H., Use of the trolox assay to estimate the antioxidant content of seventeen edible wild plants of niger (1998) Life Sciences, 63 (2), pp. 105-110. , DOI 10.1016/S0024-3205(98)00245-8, PII S0024320598002458
  • Cordoba, E., Salmi, M., León, P., Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants (2009) Journal of Experimental Botany, 60, pp. 2935-2943
  • Dai, Z., Cui, G., Zhou, S.F., Zhang, X., Huang, L., Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation (2010) Journal of Plant Physiology, 168, pp. 148-157
  • Dyer, J.H., Maina, A., Gomez, I.D., Cadet, M., Oeljeklaus, S., Schiedel, A.C., Cloning, expression and purification of an acetoacetyl CoA thiolase from sunflower cotyledon (2009) International Journal of Biological Science, 5, pp. 736-744
  • Godon, C., Lagniel, G., Lee, J., Buhler, J.-M., Kieffer, S., Perrot, M., Boucherie, H., Labarre, J., The H 2O 2 stimulon in Saccharomyces cerevisiae (1998) Journal of Biological Chemistry, 273 (35), pp. 22480-22489. , DOI 10.1074/jbc.273.35.22480
  • Grant, C.M., Metabolic reconfiguration is a regulated response to oxidative stress (2008) Journal of Biology, 7, p. 1
  • Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symposium Series, 41, pp. 95-98
  • Huang, C., He, W., Guo, J., Chang, X., Su, P., Zhang, L., Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant (2005) Journal of Experimental Botany, 56 (422), pp. 3041-3049. , DOI 10.1093/jxb/eri301, The Multi-Country Evaluation of Integrated Management of Childhood Illness (IMCI) Effectiveness, Cost and Impact
  • Hughes, A.L., Ekollu, V., Friedman, R., Rose, J.R., Gene family content-based phylogeny of prokaryotes: The effect of criteria for inferring homology (2005) Systematic Biology, 54 (2), pp. 268-276. , DOI 10.1080/10635150590923335
  • Huisman, G.W., Wonink, E., De Koning, G., Preusting, H., Witholt, B., Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains (1992) Applied Microbiology and Biotechnology, 38, pp. 1-5
  • Inui, M., Suda, M., Kimura, S., Yasuda, K., Suzuki, H., Toda, H., Yamamoto, S., Yukawa, H., Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli (2008) Applied Microbiology and Biotechnology, 77, pp. 1305-1316
  • Jaenecke, S., Diaz, E., Construction of plasmid vectors bearing a A/otl-expression cassette based on the lac promoter (1999) International Microbiology, 2 (1), pp. 29-31
  • Kadouri, D., Jurkevitch, E., Okon, Y., Castro-Sowinski, S., Ecological and agricultural significance of bacterial polyhydroxyalkanoates (2005) Critical Reviews in Microbiology, 31 (2), pp. 55-67. , DOI 10.1080/10408410590899228
  • Kirby, J., Keasling, J.D., Biosynthesis of plant isoprenoids: Perspectives for microbial engineering (2009) Annual Review of Plant Biology, 60, pp. 335-355
  • Laule, O., Furholz, A., Chang, H.-S., Zhu, T., Wang, X., Heifetz, P.B., Gruissem, W., Lange, B.M., Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (11), pp. 6866-6871. , DOI 10.1073/pnas.1031755100
  • Lichtenthaler, H.K., Chlorophylls and carotenoids: Pigments of photosynthetic biomembrane (1987) Methods in Enzymology, 148, pp. 350-382
  • Limpens, E., Ramos, J., Franken, C., Raz, V., Compaan, B., Franssen, H., Bisseling, T., Geurts, R., RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula (2004) Journal of Experimental Botany, 55 (399), pp. 983-992. , DOI 10.1093/jxb/erh122
  • Liu, Y.G., Whittier, R.F., Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking (1995) Genomics, 25, pp. 674-681
  • Liu, H., Colavitti, R., Rovira, I.I., Finkel, T., Redox-dependent transcriptional regulation (2005) Circulation Research, 97 (10), pp. 967-974. , DOI 10.1161/01.RES.0000188210.72062.10
  • Maeda, H., Song, W., Sage, T.L., DellaPenna, D., Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis (2006) Plant Cell, 18 (10), pp. 2710-2732. , DOI 10.1105/tpc.105.039404
  • Matringe, M., Ksas, B., Rey, P., Havaux, M., Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves (2008) Plant Physiology, 147 (2), pp. 764-778. , http://www.plantphysiol.org/cgi/reprint/147/2/764, DOI 10.1104/pp.108.117614
  • Modis, Y., Wierenga, R.K., A biosynthetic thiolase in complex with a reaction intermediate: The crystal structure provides new insights into the catalytic mechanism (1999) Structure, 7 (10), pp. 1279-1290. , DOI 10.1016/S0969-2126(00)80061-1
  • Mozzicafreddo, M., Cuccioloni, M., Eleuteri, A.M., Angeletti, M., Rapid reverse phase-HPLC assay of HMG-CoA reductase activity (2010) Journal of Lipid Research, 51, pp. 2460-2463
  • Noctor, G., Ch, F., Ascorbate and glutathione: Keeping active oxygen under control (1998) Annual Review of Plant Biology, 49, pp. 249-279
  • Nomura, T., Hano, Y., Fukai, T., Chemistry and biosynthesis of isoprenylated flavonoids from Japanese mulberry tree (2009) Proceedings of the Japan Academy. Series B, Physical and Bbiological Sciences, 85, pp. 391-408
  • Okamura, E., Tomita, T., Sawa, R., Nishiyama, M., Kuzuyama, T., Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway (2010) Proceedings of the National Academy of Sciences, USA, 107, pp. 11265-11270
  • Peralta-Gil, M., Segura, D., Guzmán, J., Serv́n-González, L., Esṕn, G., Expression of the Azotobacter vinelandii poly-3-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR (2002) Journal of Bacteriology, 184, pp. 5672-5677
  • Pereto, J., Lopez-Garcia, P., Moreira, D., Phylogenetic analysis of eukaryotic thiolases suggests multiple proteobacterial origins (2005) Journal of Molecular Evolution, 61 (1), pp. 65-74. , DOI 10.1007/s00239-004-0280-8
  • Phillips, A.J., Homology assessment and molecular sequence alignment (2006) Journal of Biomedical Informatics, 39 (SPEC. ISS.), pp. 18-33. , DOI 10.1016/j.jbi.2005.11.005, PII S1532046405001309
  • Pomposiello, P.J., Demple, B., Global adjustment of microbial physiology during free radical stress (2002) Advances in Microbial Physiology, 46, pp. 319-341. , DOI 10.1016/S0065-2911(02)46007-9
  • Sando, T., Takaoka, C., Mukai, Y., Yamashita, A., Hattori, M., Ogasawara, N., Fukusaki, E., Kobayashi, A., Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant, Hevea brasiliensis (2008) Bioscience, Biotechnology, and Biochemistry, 72, pp. 2049-2060
  • Sawada, H., Ieki, H., Matsuda, I., PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains (1995) Applied and Environmental Microbiology, 61, pp. 828-831
  • Schubert, P., Steinbuchel, A., Schlegel, H.G., Cloning of the Alcaligenes eutrophus genes for synthesis of poly-b-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli (1988) Journal of Bacteriology, 170, pp. 5837-5847
  • Senior, P.J., Dawes, E.A., The regulation of poly-b-hydroxybutyrate metabolism in Azotobacter beijerinckii (1973) Biochemical Journal, 134, pp. 225-238
  • Seo, J.-W., Jeong, J.-H., Shin, C.-G., Lo, S.-C., Han, S.-S., Yu, K.-W., Harada, E., Choi, Y.-E., Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation (2005) Phytochemistry, 66 (8), pp. 869-877. , DOI 10.1016/j.phytochem.2005.02.016
  • Smith, S., Salinity and the production of alfalfa (1994) Handbook of Plant and Crop Stress, pp. 431-449. , Pessakari M, ed. Tucson, AZ, USA: Marcel Dekker
  • Soto, G., Alleva, K., Mazzella, M.A., Amodeo, G., Muschietti, J.P., AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea (2008) FEBS Letters, 582, pp. 4077-4082
  • Soto, G., Fox, R., Ayub, N., Alleva, K., Guaimas, F., Erijman, E.J., Mazzella, A., Muschietti, J., TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana (2010) The Plant Journal, 64, pp. 1038-1047
  • Steinbüchel, A., Hein, S., Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms (2001) Advances in Biochemical Engineering Biotechnology, 71, pp. 81-123
  • Suzuki, M., Nakagawa, S., Kamide, Y., Kobayashi, K., Ohyama, K., Hashinokuchi, H., Kiuchi, R., Nagata, N., Complete blockage of the mevalonate pathway results in male gametophyte lethality (2009) Journal of Experimental Botany, 60, pp. 2055-2064
  • Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 (2007) Molecular Biology and Evolution, 24 (8), pp. 1596-1599. , DOI 10.1093/molbev/msm092
  • Tseng, H.C., Martin, C.H., Nielsen, D.R., Prather, K.L., Metabolic engineering of Escherichia coli for enhanced production of (R)-and (S)-3-hydroxybutyrate (2009) Applied and Environmental Microbiology, 75, pp. 3137-3145
  • Vickers, C.E., Gershenzon, J., Lerdau, M.T., Loreto, F., A unified mechanism of action for volatile isoprenoids in plant abiotic stress (2009) Nature Chemical Biology, 5, pp. 283-291
  • Varsha Wesley, S., Helliwell, C.A., Smith, N.A., Wang, M., Rouse, D.T., Liu, Q., Gooding, P.S., Waterhouse, P.M., Construct design for efficient, effective and high-throughput gene silencing in plants (2001) Plant Journal, 27 (6), pp. 581-590. , DOI 10.1046/j.1365-313X.2001.01105.x
  • Wu, G., Moir, A.J.G., Sawers, G., Hill, S., Poole, R.K., Biosynthesis of poly-β-hydroxybutyrate (PHB) is controlled by CydR (Fnr) in the obligate aerobe Azotobacter vinelandii (2001) FEMS Microbiology Letters, 194 (2), pp. 215-220. , DOI 10.1016/S0378-1097(00)00533-4, PII S0378109700005334

Citas:

---------- APA ----------
Soto, G., Stritzler, M., Lisi, C., Alleva, K., Pagano, M.E., Ardila, F., Mozzicafreddo, M.,..., Ayub, N.D. (2011) . Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. Journal of Experimental Botany, 62(15), 5699-5711.
http://dx.doi.org/10.1093/jxb/err287
---------- CHICAGO ----------
Soto, G., Stritzler, M., Lisi, C., Alleva, K., Pagano, M.E., Ardila, F., et al. "Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation" . Journal of Experimental Botany 62, no. 15 (2011) : 5699-5711.
http://dx.doi.org/10.1093/jxb/err287
---------- MLA ----------
Soto, G., Stritzler, M., Lisi, C., Alleva, K., Pagano, M.E., Ardila, F., et al. "Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation" . Journal of Experimental Botany, vol. 62, no. 15, 2011, pp. 5699-5711.
http://dx.doi.org/10.1093/jxb/err287
---------- VANCOUVER ----------
Soto, G., Stritzler, M., Lisi, C., Alleva, K., Pagano, M.E., Ardila, F., et al. Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. J. Exp. Bot. 2011;62(15):5699-5711.
http://dx.doi.org/10.1093/jxb/err287