Artículo

Tomsic, D.; Sztarker, J.; De Astrada, M.B.; Oliva, D.; Lanza, E."The predator and prey behaviors of crabs: From ecology to neural adaptations" (2017) Journal of Experimental Biology. 220(13):2318-2327
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Predator avoidance and prey capture are among the most vital of animal behaviors. They require fast reactions controlled by comparatively straightforward neural circuits often containing giant neurons, which facilitates their study with electrophysiological techniques. Naturally occurring avoidance behaviors, in particular, can be easily and reliably evoked in the laboratory, enabling their neurophysiological investigation. Studies in the laboratory alone, however, can lead to a biased interpretation of an animal's behavior in its natural environment. In this Review, we describe current knowledge - acquired through both laboratory and field studies - on the visually guided escape behavior of the crab Neohelice granulata. Analyses of the behavioral responses to visual stimuli in the laboratory have revealed the main characteristics of the crab's performance, such as the continuous regulation of the speed and direction of the escape run, or the enduring changes in the strength of escape induced by learning and memory. This work, in combination with neuroanatomical and electrophysiological studies, has allowed the identification of various giant neurons, the activity of which reflects most essential aspects of the crabs' avoidance performance. In addition, behavioral analyses performed in the natural environment reveal a more complex picture: crabs make use of much more information than is usually available in laboratory studies. Moreover, field studies have led to the discovery of a robust visually guided chasing behavior in Neohelice. Here, we describe similarities and differences in the results obtained between the field and the laboratory, discuss the sources of any differences and highlight the importance of combining the two approaches. © 2017. Published by The Company of Biologists Ltd.

Registro:

Documento: Artículo
Título:The predator and prey behaviors of crabs: From ecology to neural adaptations
Autor:Tomsic, D.; Sztarker, J.; De Astrada, M.B.; Oliva, D.; Lanza, E.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, Buenos Aires, CP1428, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, Buenos Aires, CP1428, Argentina
Departamento de Cienciay Tecnología, Universidad Nacional de Quilmes, Quilmes, CP1878, Argentina
Palabras clave:Electrophysiology; Escape; Insects; Looming; Neurobiology; Neurons; animal; avoidance behavior; Brachyura; escape behavior; food chain; nerve cell; physiology; predation; vision; Animals; Avoidance Learning; Brachyura; Escape Reaction; Food Chain; Neurons; Predatory Behavior; Visual Perception
Año:2017
Volumen:220
Número:13
Página de inicio:2318
Página de fin:2327
DOI: http://dx.doi.org/10.1242/jeb.143222
Handle:http://hdl.handle.net/20.500.12110/paper_00220949_v220_n13_p2318_Tomsic
Título revista:Journal of Experimental Biology
Título revista abreviado:J. Exp. Biol.
ISSN:00220949
CODEN:JEBIA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220949_v220_n13_p2318_Tomsic

Referencias:

  • Berón De Astrada, M., Tomsic, D., Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura) (2002) J. Comp. Physiol. A, 188, pp. 539-551
  • Berón De Astrada, M., Medan, V., Tomsic, D., How visual space maps in the optic neuropils of a crab (2011) J. Comp. Neurol., 519, pp. 1631-1639
  • Berón De Astrada, M., Bengochea, M., Medan, V., Tomsic, D., Regionalization in the eye of the grapsid crab neohelice granulata (=Chasmagnathus granulatus): Variation of resolution and facet diameters (2012) J. Comp. Physiol. A, 198, pp. 173-180
  • Berón De Astrada, M., Bengochea, M., Sztarker, J., Delorenzi, A., Tomsic, D., Behavioral related neural plasticity in the arthropod optic lobes (2013) Curr. Biol., 23, pp. 1389-1398
  • Borst, A., Fly visual course control: Behaviour, algorithms and circuits (2014) Nat Rev. Neurosci., 15, pp. 590-599
  • Daleo, P., Ribeiro, P., Iribarne, O., The SW Atlantic burrowing crab Chasmagnathus granulatus Dana affects the distribution and survival of the fiddler crab Uca uruguayensis Nobili (2003) J. Exp. Mar. Biol. Ecol., 291, pp. 255-267
  • Edwards, D.H., Heitler, W.J., Krasne, F.B., Crustacean studies and the early history of GABA (1999) Trends Neurosci., 22, p. 347
  • Edwards, D.H., Heitler, W.J., Krasne, F.B., Fifty years of a command neuron: The neurobiology of escape behavior in the crayfish (1999) Trends Neurosci., 22, pp. 153-161
  • Fathala, M.V., Maldonado, H., Shelter use during exploratory and escape behaviour of the crab chasmagnathus granulatus: A field study (2011) J. Ethol., 29, pp. 263-273
  • Furshpan, E.J., Potter, D.D., Transmission at the giant motor synapses of the crayfish (1959) J. Physiol., 145, pp. 289-325
  • Glantz, R., Visual systems of crustaceans (2014) Crustacean Nervous Systems and their Control of Behavior (third Volume of a Ten-volume Set on the Natural History of Crustaceans), pp. 206-234. , (ed. C. Derby and M. Thiel), Chapter 8 Oxford: Oxford University Press
  • Glantz, R.M., Miller, C.S., Signal processing in the crayfish optic lobe: Contrast, motion and polarization vision (2002) The Crustacean Nervous System, pp. 471-483. , (ed. K. Wiese) Heidelberg: Springer
  • Hemmi, J.M., Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation (2005) Anim. Behav., 69, pp. 603-614
  • Hemmi, J.M., Pfeil, A., A multi-stage anti-predator response increases information on predation risk (2010) J. Exp. Biol., 213, pp. 1484-1489
  • Hemmi, J.M., Tomsic, D., The neuroethology of escape in crabs: From sensory ecology to neurons and back (2012) Curr. Opin. Neurobiol., 22, pp. 194-200
  • Hemmi, J.M., Tomsic, D., Differences in the escape response of a grapsid crab in the field and in the laboratory (2015) J. Exp. Biol., 218, pp. 3499-3507
  • Hemmi, J.M., Zeil, J., Robust judgement of inter-object distance by an arthropod (2003) Nature, 421, pp. 160-163
  • Herberholz, J., Marquart, G., Decision making and behavioral choice during predator avoidance (2012) Front. Neurosci., 6, p. 125
  • Krasne, F.B., Heitler, W.J., Edwards, D.H., The escape behavior of crayfish (2014) Crustacean Nervous Systems and their Control of Behavior (third Volumeofa Ten-volume Set on the Natural History of Crustaceans), pp. 396-427. , (ed. C. Derby and M. Thiel), Chapter 15 Oxford: Oxford University Press
  • Kravitz, E.A., Potter, D.D., Van Gelder, N.M., Gamma-aminobutyric acid and other blocking substances extracted from crab muscle (1962) Nature, 194, pp. 382-383
  • Land, M., Layne, J.E., The visual control of behaviour in fiddler crabs. II. Tracking control systems in courtship and defence (1995) J. Comp. Physiol. A, 177, pp. 91-103
  • Layne, J., Land, M.F., Zeil, J., Fiddler crabs use the visual horizon to distinguish predators from conspecifics: A review of the evidence (1997) J. Mar. Biol., 77, pp. 43-54
  • Luppi, T., Bas, C., Méndez Casariego, A., Albano, M., Lancia, J., Kittlein, M., Rosenthal, A., Iribarne, O., The infuence of habitat, season and tidal regime in the activity of the intertidal crab neohelice (=Chasmagnathus) granulata (2012) Helgol. Mar. Res.
  • Ma, X., Hou, X., Edgecombe, G.D., Strausfeld, N.J., Complex brain and optic lobes in an early cambrian arthropod (2012) Nature, 490, pp. 258-261
  • Magani, F., Luppi, T., Nuñez, J., Tomsic, D., Predation risk modifies behaviour by shaping the response of identified brain neurons (2016) J. Exp. Biol., 219, pp. 1172-1177
  • Maza, F.J., Sztarker, J., Shkedy, A., Peszano, V.N., Locatelli, F.F., Delorenzi, A., Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers (2016) Proc. Natl. Acad. Sci. USA, 113, pp. E7957-E7965
  • Medan, V., Oliva, D., Tomsic, D., Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab chasmagnathus (2007) J. Neurophys., 98, pp. 2414-2428
  • Medan, V., Beron De Astrada, M., Scarano, F., Tomsic, D., A network of visual motion-sensitive neurons for computing object position in an arthropod (2015) J. Neurosci., 35, pp. 6654-6666
  • Monk, T., Paulin, M.G., Predation and the origin of neurones (2014) Brain. Behav. Evol., 84, pp. 246-261
  • Nordström, K.L., Neural specializations for small target detection in insects (2012) Curr. Opin Neurobiol., 22, pp. 272-278
  • Oliva, D., (2010) Mechanisms of Visual Detection and Avoidance of Collision Stimuli in a New Experimental Model: The Crab Chasmagnathus Granulatus, , PhD thesis, University of Buenos Aires, Argentina
  • Oliva, D., Tomsic, D., Visuo-motor transformations involved in the escape response to looming stimuli in the crab neohelice (=Chasmagnathus) granulata (2012) J. Exp. Biol., 215, pp. 3488-3500
  • Oliva, D., Tomsic, D., Computation of object approach by a system of visual motion-sensitive neurons in the crab neohelice (2014) J. Neurophysiol., 112, pp. 1477-1490
  • Oliva, D., Tomsic, D., Object approach computation by a giant neuron and its relationship with the speed of escape in the crab neohelice (2016) J. Exp. Biol., 219, pp. 3339-3352
  • Oliva, D., Medan, V., Tomsic, D., Escape behaviour and neuronal responses to looming stimuli in the crab chasmagnathus granulatus (Decapoda: Grapsidae) (2007) J. Exp. Biol., 210, pp. 865-880
  • Pedreira, M.E., Maldonado, H., Protein synthesis subserves reconsolidation or extinction depending on reminder duration (2003) Neuron, 3, pp. 8863-8869
  • Pedreira, M.E., Romano, A., Tomsic, D., Lozada, M., Maldonado, H., Massed and spaced training build up different components of long-term habituation in the crab chasmagnathus (1998) Anim. Learn. Behav., 26, pp. 32-43
  • Peek, M.Y., Card, G.M., Comparative approaches to escape (2016) Curr Opin. Neurobiol., 41, pp. 167-173
  • Pereyra, P., De La Iglesia, H.O., Maldonado, H., Training-to-testing intervals different from 24 h impair habituation in the crab chasmagnathus (1996) Physiol. Behav., 59, pp. 19-25
  • Scarano, F., Tomsic, D., Escape response of the crab neohelice to computer generated looming and translational visual danger stimuli (2014) J. Physiol. Paris, 108, pp. 141-147
  • Sinakevitch, I., Douglass, J.K., Scholtz, G., Loesel, R., Strausfeld, N.J., Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa (2003) J. Comp. Neurol., 467, pp. 150-172
  • Smolka, J., Hemmi, J.M., Topography of vision and behaviour (2009) J. Exp. Biol., 212, pp. 3522-3532
  • Smolka, J., Raderschall, C.A., Hemmi, J.M., Flicker is part of a multi-cue response criterion in fiddler crab predator avoidance (2013) J. Exp. Biol., 216, pp. 1219-1224
  • Sombke, A., Harzsch, S., Immunolocalization of histamine in the optic neuropils of scutigera coleoptrata (Myriapoda: Chilopoda) reveals the basal organization of visual systems in mandibulata (2015) Neurosci. Lett., 594, pp. 111-116
  • Spivak, E., The crab neohelice (=Chasmagnathus) granulata: An emergent animal model from emergent countries (2010) Helgol. Mar. Res., 64, pp. 149-154
  • Sztarker, J., Tomsic, D., Binocular visual integration in the crustacean nervous system (2004) J. Comp. Physiol. A, 190, pp. 951-962
  • Sztarker, J., Tomsic, D., Neuronal correlates of the visually elicited escape response of the crab chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations (2008) J. Comp. Physiol. A, 194, pp. 587-596
  • Sztarker, J., Tomsic, D., Brain modularity in arthropods: Individual neurons that support "what" but not "where" memories (2011) J. Neurosci., 31, pp. 8175-8180
  • Sztarker, J., Tomsic, D., Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab neohelice granulata (2014) J. Comp. Neurol., 522, pp. 3177-3193
  • Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of optic lobes that support motion detection in a semiterrestrial crab (2005) J. Comp. Neurol., 493, pp. 396-411
  • Sztarker, J., Strausfeld, N., Andrew, D., Tomsic, D., Neural organization of first optic neuropils in the littoral crab hemigrapsus oregonensis and the semiterrestrial species chasmagnathus granulatus (2009) J. Comp. Neurol., 513, pp. 129-150
  • Tomsic, D., Visual motion processing subserving behavior in crabs (2016) Curr. Opin. Neurobiol., 41, pp. 113-121
  • Tomsic, D., Maldonado, H., Neurobiology of learning and memory of crustaceans (2014) Crustacean Nervous Systems and their Control of Behavior (third Volume of a Ten-volume Set on the Natural History of Crustaceans), pp. 509-534. , (ed. C. Derby and M. Thiel), Chapter 19 Oxford: Oxford University Press
  • Tomsic, D., Romano, A., A multidisciplinary approach to learning and memory in the crab neohelice (Chasmagnathus) granulata (2013) Invertebrate Learning and Memory, pp. 335-353. , (ed. R. Menzel and P. R. Benjamin) Amsterdam: Elsevier/Academic Press
  • Tomsic, D., Pedreira, M.E., Romano, A., Hermite, G., Maldonado, H., Context-US association as a determinant of long-term habituation in the crab chasmagnathus (1998) Anim. Learn. Behav., 26, pp. 196-209
  • Tomsic, D., Berón De Astrada, M., Sztarker, J., Identification of individual neurons reflecting short- and long-term visual memory in an arthropod (2003) J. Neurosci., 23, pp. 8539-8546
  • Tomsic, D., Berón De Astrada, M., Sztarker, J., Maldonado, H., Behavioral and neuronal attributes of short- and long-term habituation in the crab chasmagnathus (2009) Neurobiol. Learn Mem., 92, pp. 176-182
  • Ullrich, T.W., Kern, R., Egelhaaf, M., Influence of environmental information in natural scenes and the effects of motion adaptation on a fly motionsensitive neuron during simulated flight (2015) Biol. Open., 4, pp. 13-21
  • Wolff, G.H., Strausfeld, N.J., Genealogical correspondence of a forebrain centre implies an executive brain in the protostome-deuterostome bilaterian ancestor (2016) Philos. Trans. R. Soc. Lond. B Biol. Sci., 371, p. 20150055
  • Yeh, S.-R., Fricke, R.A., Edwards, D.H., The effect ofsocial experience on serotonergic modulation of the escape circuit of crayfish (1996) Science, 271, pp. 366-369
  • Zeil, J., Substratum slope and the alignment of acute zones in semi-terrestrial crabs (Ocypode ceratophthalmus) (1990) J. Exp. Biol., 152, pp. 573-576
  • Zeil, J., Al-Mutairi, M., The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab uca lactea annulipes (Ocypodidae, brachyura, decapoda) (1996) J. Exp. Biol., 199, pp. 1569-1577

Citas:

---------- APA ----------
Tomsic, D., Sztarker, J., De Astrada, M.B., Oliva, D. & Lanza, E. (2017) . The predator and prey behaviors of crabs: From ecology to neural adaptations. Journal of Experimental Biology, 220(13), 2318-2327.
http://dx.doi.org/10.1242/jeb.143222
---------- CHICAGO ----------
Tomsic, D., Sztarker, J., De Astrada, M.B., Oliva, D., Lanza, E. "The predator and prey behaviors of crabs: From ecology to neural adaptations" . Journal of Experimental Biology 220, no. 13 (2017) : 2318-2327.
http://dx.doi.org/10.1242/jeb.143222
---------- MLA ----------
Tomsic, D., Sztarker, J., De Astrada, M.B., Oliva, D., Lanza, E. "The predator and prey behaviors of crabs: From ecology to neural adaptations" . Journal of Experimental Biology, vol. 220, no. 13, 2017, pp. 2318-2327.
http://dx.doi.org/10.1242/jeb.143222
---------- VANCOUVER ----------
Tomsic, D., Sztarker, J., De Astrada, M.B., Oliva, D., Lanza, E. The predator and prey behaviors of crabs: From ecology to neural adaptations. J. Exp. Biol. 2017;220(13):2318-2327.
http://dx.doi.org/10.1242/jeb.143222