Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Upon detection of an approaching object, the crab Neohelice granulata continuously regulates the direction and speed of escape according to ongoing visual information. These visuomotor transformations are thought to be largely accounted for by a small number of motion-sensitive giant neurons projecting from the lobula (third optic neuropil) towards the supraesophageal ganglion. One of these elements, the monostratified lobula giant neuron of type 2 (MLG2), proved to be highly sensitive to looming stimuli (a 2D representation of an object approach). By performing in vivo intracellular recordings, we assessed the response of the MLG2 neuron to a variety of looming stimuli representing objects of different sizes and velocities of approach. This allowed us to: (1) identify some of the physiological mechanisms involved in the regulation of the MLG2 activity and test a simplified biophysical model of its response to looming stimuli; (2) identify the stimulus optical parameters encoded by the MLG2 and formulate a phenomenological model able to predict the temporal course of the neural firing responses to all looming stimuli; and (3) incorporate the MLG2-encoded information of the stimulus (in terms of firing rate) into a mathematical model able to fit the speed of the escape run of the animal. The agreement between the model predictions and the actual escape speed measured on a treadmill for all tested stimuli strengthens our interpretation of the computations performed by the MLG2 and of the involvement of this neuron in the regulation of the animal's speed of run while escaping from objects approaching with constant speed.

Registro:

Documento: Artículo
Título:Object approach computation by a giant neuron and its relationship with the speed of escape in the crab neohelice
Autor:Oliva, D.; Tomsic, D.
Filiación:CONICET, Departamento de Ciencia Y Tecnologiá, Universidad Nacional de Quilmes, Quilmes, 1878, Argentina
Departamento Fisiologiá, Biologiá Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pabellón 2 Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Collision avoidance; Crustacean; Escape response; Lobula neurons; Looming; Motion detection; action potential; animal; biological model; biophysics; Brachyura; escape behavior; male; movement perception; nerve cell; photostimulation; physiology; Action Potentials; Animals; Biophysical Phenomena; Brachyura; Escape Reaction; Male; Models, Biological; Motion Perception; Neurons; Photic Stimulation
Año:2016
Volumen:219
Número:21
Página de inicio:3339
Página de fin:3352
DOI: http://dx.doi.org/10.1242/jeb.136820
Título revista:Journal of Experimental Biology
Título revista abreviado:J. Exp. Biol.
ISSN:00220949
CODEN:JEBIA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220949_v219_n21_p3339_Oliva

Referencias:

  • Berón De Astrada, M., Tomsic, D., Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura) (2002) J. Comp. Physiol. A, 188, pp. 539-551
  • Berón De Astrada, M., Medan, V., Tomsic, D., How visual space maps in the optic neuropils of a crab (2011) J. Comp. Neurol., 519, pp. 1631-1639
  • Berón De Astrada, M., Bengochea, M., Medan, V., Tomsic, D., Regionalization in the eye of the grapsid crab Neohelice granulata (=Chasmagnathus granulatus): Variation of resolution and facet diameters (2012) J. Comp. Physiol. A, 198, pp. 173-180
  • Borst, A., Fly visual interneurons responsive to image expansion (1991) Zool. Jb. Physiol., 95, pp. 305-313
  • Borst, A., Bahde, S., Visual information processing in the fly's landing system (1988) J. Comp. Physiol. A, 163, pp. 167-173
  • Card, G., Dickinson, M., Visually mediated motor planning in the escape response of Drosophila (2008) Curr. Biol., 18, pp. 1300-1307
  • Destexhe, A., Mainen, Z.F., Sejnowski, T.J., An efficient method for computing synaptic conductances based on a kinetic model of receptor binding (1994) Neural. Comput., 6, pp. 14-18
  • Dunn, T.W., Gebhardt, C., Naumann, E.A., Riegler, C., Ahrens, M.B., Engert, F., Del Bene, F., Neural circuits underlying visually evoked escapes in larval zebrafish (2016) Neuron, 89, pp. 613-628
  • Fotowat, H., Gabbiani, F., Relationship between the phases of sensory and motor activity during a looming-evoked multistage escape behavior (2007) J. Neurosci., 27, pp. 10047-10059
  • Fotowat, H., Gabbiani, F., Collision detection as a model for sensorymotor integration (2011) Annu. Rev. Neurosci., 34, pp. 1-19
  • Fotowat, H., Fayyazuddin, A., Bellen, H.J., Gabbiani, F., A novel neuronal pathway for visually guided escape in Drosophila melanogaster (2009) J. Neurophysiol., 102, pp. 875-885
  • Fotowat, H., Harrison, R., Gabbiani, F., Multiplexing of motor information in the discharge of a collision detecting neuron during escape behaviors (2011) Neuron, 69, pp. 147-158
  • Gabbiani, F., Krapp, H.G., Laurent, G., Computation of object approach by a wide field, motion-sensitive neuron (1999) J. Neurosci., 19, pp. 1122-1141
  • Gabbiani, F., Krapp, H.G., Koch, C., Laurent, G., Multiplicative computation in a visual neuron sensitive to looming (2002) Nature, 420, pp. 320-324
  • Glantz, R.M., Defense reflex and motion detector responsiveness to approaching targets: The motion detector trigger to the defense reflex pathway (1974) J. Comp. Physiol., 95, pp. 297-314
  • Gray, J.R., Blincow, E., Robertson, R.M., A pair of motion-sensitive neurons in the locust encode approaches of a looming object (2010) J. Comp. Physiol. A, 196, pp. 927-938
  • Hemmi, J.M., Tomsic, D., The neuroethology of escape in crabs: From sensory ecology to neurons and back (2012) Curr. Opin. Neurobiol., 22, pp. 194-200
  • Herberholz, J., Marquart, G.D., Decision making and behavioral choice during predator avoidance (2012) Front. Neurosci., 6, pp. 1-15
  • Jones, P.W., Gabbiani, F., Synchronized neural input shapes stimulus selectivity in a collision-detecting neuron (2010) Curr. Biol., 20, pp. 2052-2057
  • Jones, P.W., Gabbiani, F., Logarithmic compression of sensory signals within the dendritic tree of a collision-sensitive neuron (2012) J. Neurosci., 32, pp. 4923-4934
  • Land, M., Layne, J.E., The visual control of behaviour in fiddler crabs. II. Tracking control systems in courtship and defence (1995) J. Comp. Physiol. A, 177, pp. 91-103
  • Layne, J., Wicklein, M., Dodge, F.A., Barlow, R.B., Prediction of maximum allowable retinal slip speed in the fiddler crab, Uca pugilator (1997) Biol. Bull., 193, pp. 202-203
  • Maier, J.X., Neuhoff, J.G., Logothetis, N.K., Ghazanfar, A.A., Multisensory integration of looming signals by rhesus monkeys (2004) Neuron, 43, pp. 177-181
  • Medan, V., Oliva, D., Tomsic, D., Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus (2007) J. Neurophysiol., 98, pp. 2414-2428
  • Medan, V., Beron De Astrada, M., Scarano, F., Tomsic, D., A network of visual motion-sensitive neurons for computing object position in an arthropod (2015) J. Neurosci., 35, pp. 6654-6666
  • Oliva, D., Collision avoidance models, visually guided (2015) Encyclopedia of Computational Neuroscience, pp. 626-645. , ed. D. Jaeger and R. Jung, Berlin: Springer-Verlag
  • Oliva, D., Tomsic, D., Visuo-motor transformations involved in the escape response to looming stimuli in the crab Neohelice (=Chasmagnathus) granulata (2012) J. Exp. Biol., 215, pp. 3488-3500
  • Oliva, D., Tomsic, D., Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice (2014) J. Neurophysiol., 112, pp. 1477-1490
  • Oliva, D., Medan, V., Tomsic, D., Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae) (2007) J. Exp. Biol., 210, pp. 865-880
  • Peron, S.P., Gabbiani, F., Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron (2009) Nat. Neurosci., 12, pp. 318-326
  • Preuss, T., Osei-Bonsu, P.E., Weiss, S.A., Wang, C., Faber, D.S., Neural representation of object approach in a decision-making motor circuit (2006) J. Neurosci., 26, pp. 3454-3464
  • Rind, F.C., Intracellular characterization of neurons in the locust brain signaling impending collision (1996) J. Neurophysiol, 75, pp. 986-995
  • Rind, F.C., Bramwell, D.I., Neural network based on the input organization of an identified neuron signaling impending collision (1996) J. Neurophysiol., 75, pp. 967-985
  • Rind, F.C., Simmons, P.J., Orthopteran DCMD neuron: A reevaluation of responses to moving objects. I. Selective responses to approaching objects (1992) J. Neurophysiol., 68, pp. 1654-1666
  • Santer, R.D., Yamawaki, Y., Rind, F.C., Simmons, P.J., Motor activity and trajectory control during escape jumping in the locust Locusta migratoria (2005) J. Comp. Physiol. A, 191, pp. 965-975
  • Santer, R.D., Yamawaki, Y., Rind, F.C., Simmons, P.J., Preparing for escape: An examination of the role of the DCMD neuron in locust escape jumps (2008) J. Comp. Physiol. A, 194, pp. 69-77
  • Silva, A.C., McMillan, G.A., Santos, C.P., Gray, J.R., Background complexity affects response of a looming-sensitive neuron to object motion (2015) J. Neurophysiol., 113, pp. 218-231
  • Simmons, P.J., Rind, F.C., Santer, R.D., Escapes with and without preparation: The neuroethology of visual startle in locusts (2010) J. Insect Physiol., 56, pp. 876-883
  • Srinivasan, M.V., Zhang, S., Visual motor computations in insects (2004) Annu. Rev. Neurosci., 27, pp. 679-696
  • Sun, H., Frost, B.J.F., Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons (1998) Nat. Neurosci., 1, pp. 296-303
  • Sztarker, J., Rind, F.C., A look into the cockpit of the developing locust: Looming detectors and predator avoidance (2014) Dev. Neurobiol., 74, pp. 1078-1095
  • Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of optic lobes that support motion detection in a semiterrestrial crab (2005) J. Comp. Neurol., 493, pp. 396-411
  • Tammero, L.F., Dickinson, M.H., Collision-Avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster (2002) J. Exp. Biol., 205, pp. 2785-2798
  • Wagner, H., Flow-field variables trigger landing in flies (1982) Nature, 297, pp. 147-148
  • Wang, Y., Frost, B.J., Time to collision is signalled by neurons in the nucleus rotundus of pigeons (1992) Nature, 356, pp. 236-238
  • Wasserman, L., All of statistics (2004) A Concise Course in Statistical Inference, pp. 107-116. , Chapter 8, New York: Springer

Citas:

---------- APA ----------
Oliva, D. & Tomsic, D. (2016) . Object approach computation by a giant neuron and its relationship with the speed of escape in the crab neohelice. Journal of Experimental Biology, 219(21), 3339-3352.
http://dx.doi.org/10.1242/jeb.136820
---------- CHICAGO ----------
Oliva, D., Tomsic, D. "Object approach computation by a giant neuron and its relationship with the speed of escape in the crab neohelice" . Journal of Experimental Biology 219, no. 21 (2016) : 3339-3352.
http://dx.doi.org/10.1242/jeb.136820
---------- MLA ----------
Oliva, D., Tomsic, D. "Object approach computation by a giant neuron and its relationship with the speed of escape in the crab neohelice" . Journal of Experimental Biology, vol. 219, no. 21, 2016, pp. 3339-3352.
http://dx.doi.org/10.1242/jeb.136820
---------- VANCOUVER ----------
Oliva, D., Tomsic, D. Object approach computation by a giant neuron and its relationship with the speed of escape in the crab neohelice. J. Exp. Biol. 2016;219(21):3339-3352.
http://dx.doi.org/10.1242/jeb.136820