Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Natural odors are typically mixtures of several chemical components. Mixtures vary in composition among odor objects that have the same meaning. Therefore a central 'categorization' problem for an animal as it makes decisions about odors in natural contexts is to correctly identify odor variants that have the same meaning and avoid variants that have a different meaning. We propose that identified mechanisms of associative and non-associative plasticity in early sensory processing in the insect antennal lobe and mammalian olfactory bulb are central to solving this problem. Accordingly, this plasticity should work to improve categorization of odors that have the opposite meanings in relation to important events. Using synthetic mixtures designed to mimic natural odor variation among flowers, we studied how honey bees learn about and generalize among floral odors associated with food. We behaviorally conditioned honey bees on a difficult odor discrimination problem using synthetic mixtures that mimic natural variation among snapdragon flowers. We then used calcium imaging to measure responses of projection neurons of the antennal lobe, which is the first synaptic relay of olfactory sensory information in the brain, to study how ensembles of projection neurons change as a result of behavioral conditioning. We show how these ensembles become 'tuned' through plasticity to improve categorization of odors that have the different meanings. We argue that this tuning allows more efficient use of the immense coding space of the antennal lobe and olfactory bulb to solve the categorization problem. Our data point to the need for a better understanding of the 'statistics' of the odor space. © 2016. Published by The Company of Biologists Ltd.

Registro:

Documento: Artículo
Título:Learning about natural variation of odor mixtures enhances categorization in early olfactory processing
Autor:Locatelli, F.F.; Fernandez, P.C.; Smith, B.H.
Filiación:School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, United States
IFIByNE-Universidad de Buenos Aires, CONICET, Dpto. Fisiologa, Biologa Molecular y Celular, Ciudad Autonoma de Buenos Aires, C1428EHA, Argentina
INTA, EEA Delta Del Parana (UBA CONICET), Rio Parana de las Palmas y Canal Comas, Campana, 2804, Argentina
Palabras clave:Categorization; Natural odors; Olfaction; Plasticity; Variability; calcium; fragrance; animal; animal behavior; antenna (organ); Antirrhinum; bee; conditioning; flower; learning; metabolism; nerve cell; olfactory system; physical stimulation; physiology; three dimensional imaging; Animals; Antirrhinum; Arthropod Antennae; Bees; Behavior, Animal; Calcium; Conditioning (Psychology); Flowers; Imaging, Three-Dimensional; Learning; Neurons; Odorants; Olfactory Pathways; Physical Stimulation
Año:2016
Volumen:219
Número:17
Página de inicio:2752
Página de fin:2762
DOI: http://dx.doi.org/10.1242/jeb.141465
Título revista:Journal of Experimental Biology
Título revista abreviado:J. Exp. Biol.
ISSN:00220949
CODEN:JEBIA
CAS:calcium, 7440-70-2, 14092-94-5; Calcium
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220949_v219_n17_p2752_Locatelli

Referencias:

  • Bazhenov, M., Huerta, R., Smith, B.H., A computational framework for understanding decision making through integration of basic learning rules (2013) J. Neurosci., 33, pp. 5686-5697
  • Bertazzini, M., Forlani, G., Intraspecific variability of floral nectar volume and composition in rapeseed (Brassica napus L var oleifera) (2016) Front. Plant Sci., 7, p. 288
  • Bitterman, M.E., Menzel, R., Fietz, A., Schafer, S., Classical conditioning of proboscis extension in honeybees (Apis mellifera) (1983) J. Comp. Psychol., 97, pp. 107-119
  • Bushdid, C., Magnasco, M.O., Vosshall, L.B., Keller, A., Humans can discriminate more than 1 trillion olfactory stimuli (2014) Science, 343, pp. 1370-1372
  • Chandra, S., Smith, B.H., An analysis of synthetic processing of odor mixtures in the honeybee (Apis mellifera) (1998) J. Exp. Biol., 201, pp. 3113-3121
  • Chandra, S.B.C., Wright, G.A., Smith, B.H., Latent inhibition in the honey bee, Apismellifera: Is it a unitary phenomenon? (2010) Anim. Cogn., 13, pp. 805-815
  • Chen, J.-Y., Marachlian, E., Assisi, C., Huerta, R., Smith, B.H., Locatelli, F., Bazhenov, M., Learning modifies odor mixture processing to improve detection of relevant components (2015) J. Neurosci., 35, pp. 179-197
  • Chittka, L., Raine, N.E., Recognition of flowers by pollinators (2006) Curr. Opin. Plant Biol., 9, pp. 428-435
  • Daly, K.C., Wright, G.A., Smith, B.H., Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth Manduca sexta (2004) J. Neurophysiol., 92, pp. 236-254
  • Deisig, N., Giurfa, M., Lachnit, H., Sandoz, J.-C., Neural representation of olfactory mixtures in the honeybee antennal lobe (2006) Eur. J. Neurosci., 24, pp. 1161-1174
  • Deisig, N., Giurfa, M., Sandoz, J.C., Antennal lobe processing increases separability of odor mixture representations in the honeybee (2010) J. Neurophysiol., 103, pp. 2185-2194
  • Dudareva, N., Pichersky, E., Biochemical and molecular genetic aspects of floral scents (2000) Plant Physiol., 122, pp. 627-633
  • Dudareva, N., Pichersky, E., Gershenzon, J., Biochemistry of plant volatiles (2004) Plant Physiol., 135, pp. 1893-1902
  • Fernandez, P.C., Locatelli, F.F., Person-Rennell, N., Deleo, G., Smith, B.H., Associative conditioning tunes transient dynamics of early olfactory processing (2009) J. Neurosci., 29, pp. 10191-10202
  • Flanagan, D., Mercer, A.R., An atlas and 3-D reconstruction of the antennal lobes in the worker honey bee, Apis mellifera L (Hymenoptera: Apidae) (1989) Int. J. Insect Morphol. Embryol., 18, pp. 145-159
  • Galan, R.F., Weidert, M., Menzel, R., Herz, A.V.M., Galizia, C.G., Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli (2006) Neural Comput., 18, pp. 10-25
  • Galizia, C.G., Kimmerle, B., Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy (2004) J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol, 190, pp. 21-38
  • Galizia, C.G., Rossler, W., Parallel olfactory systems in insects: Anatomy and function (2010) Annu. Rev. Entomol., 55, pp. 399-420
  • Galizia, C.G., McIlwrath, S.L., Menzel, R., A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy (1999) Cell Tissue Res., 295, pp. 383-394
  • Gerkin, R.C., Castro, J.B., The number of olfactory stimuli that humans can discriminate is still unknown (2015) ELife, 4, p. e08127
  • Guerrieri, F., Schubert, M., Sandoz, J.-C., Giurfa, M., Perceptual and neural olfactory similarity in honeybees (2005) PLoS Biol., 3, p. e60
  • Hammer, M., An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees (1993) Nature, 366, pp. 59-63
  • Hellstern, F., Malaka, R., Hammer, M., Backward inhibitory learning in honeybees: A behavioral analysis of reinforcement processing (1998) Learn Mem., 4, pp. 429-444
  • Hildebrand, J.G., Shepherd, G.M., Mechanisms of olfactory discrimination: Converging evidence for common principles across phyla (1997) Annu. Rev. Neurosci., 20, pp. 595-631
  • Kirschner, S., Kleineidam, C.J., Zube, C., Rybak, J., Grunewald, B., Rossler, W., Dual olfactory pathway in the honeybee, Apis mellifera (2006) J. Comp. Neurol., 499, pp. 933-952
  • Knauer, A.C., Schiestl, F.P., Bees use honest floral signals as indicators of reward when visiting flowers (2015) Ecol. Lett., 18, pp. 135-143
  • Lenochova, P., Vohnoutova, P., Roberts, S.C., Oberzaucher, E., Grammer, K., Havlcek, J., Psychology of fragrance use: Perception of individual odor and perfume blends reveals a mechanism for idiosyncratic effects on fragrance choice (2012) PLoS ONE, 7, p. e33810
  • Linster, C., Smith, B.H., A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: Overshadowing, blocking and unblocking can arise from lateral inhibition (1997) Behav. Brain Res., 87, pp. 1-14
  • Linster, C., Smith, B.H., Generalization between binary odor mixtures and their components in the rat (1999) Physiol. Behav., 66, pp. 701-707
  • Linster, C., Sachse, S., Galizia, C.G., Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli (2005) J. Neurophysiol., 93, pp. 3410-3417
  • Locatelli, F.F., Rela, L., Mosaic activity patterns and their relation to perceptual similarity: Open discussions on the molecular basis and circuitry of odor recognition (2014) J. Neurochem., 131, pp. 546-553
  • Locatelli, F.F., Fernandez, P.C., Villareal, F., Muezzinoglu, K., Huerta, R., Galizia, C.G., Smith, B.H., Nonassociative plasticity alters competitive interactions among mixture components in early olfactory processing (2013) Eur. J. Neurosci., 37, pp. 63-79
  • Lubow, R.E., Latent inhibition (1973) Psychol. Bull., 79, pp. 398-407
  • Mattu, V.K., Raj, H., Thakur, M.L., Foraging behavior of honey bees on apple crop and its variation with altitude in Shimla Hills of western Himalaya, India (2012) Int. J. Sci. Nat., 3, pp. 296-301
  • Mauelshagen, J., Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain (1993) J. Neurophysiol., 69, pp. 609-625
  • Mazor, O., Laurent, G., Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons (2005) Neuron, 48, pp. 661-673
  • Meister, M., On the dimensionality of odor space (2015) ELlife, 4, p. e07865
  • Negre, F., Kish, C.M., Boatright, J., Underwood, B., Shibuya, K., Wagner, C., Clark, D.G., Dudareva, N., Regulation of methylbenzoate emission after pollination in snapdragon and petunia flower (2003) Plant Cell, 15, pp. 2992-3006
  • Raguso, R.A., Wake up and smell the roses: The ecology and evolution of floral scent (2008) Annu. Rev. Ecol. Evol. Syst., 39, pp. 549-569
  • Raguso, R.A., Leclere, A.R., Schlumpberger, B.O., Sensory flexibility in hawkmoth foraging behavior: Lessons from Manduca sexta and other species (2005) Chem. Senses, 30, pp. i295-i296
  • Rein, J., Mustard, J.A., Strauch, M., Smith, B.H., Galizia, C.G., Octopamine modulates activity of neural networks in the honey bee antennal lobe (2013) J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 199, pp. 947-962
  • Rescorla, R.A., Pavlovian conditioned inhibition (1969) Psychol. Bull., 72, pp. 77-94
  • Riffell, J.A., Lei, H., Abrell, L., Hildebrand, J.G., Neural basis of a pollinator's buffet: Olfactory specialization and learning in Manduca sexta (2013) Science, 339, pp. 200-204
  • Robertson, H.M., AndWanner, K.W., The chemoreceptor superfamily in the honey bee, Apis mellifera: Expansion of the odorant, but not gustatory, receptor family (2006) Genome Res., 16, pp. 1395-1403
  • Rybak, J., Menzel, R., Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha-lobe (1993) J. Comp. Neurol., 334, pp. 444-465
  • Sachse, S., Galizia, C.G., Role of inhibition for temporal and spatial odor representation in olfactory output neurons: A calcium imaging study (2002) J. Neurophysiol., 87, pp. 1106-1117
  • Sandoz, J.C., Galizia, C.G., Menzel, R., Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes (2003) Neuroscience, 120, pp. 1137-1148
  • Shafir, S., Wiegmann, D.D., Smith, B.H., Real, L.A., Risk-sensitive foraging: Choice behaviour of honeybees in response to variability in volume of reward (1999) Anim. Behav., 57, pp. 1055-1061
  • Sharpee, T., Rust, N.C., Bialek, W., Analyzing neural responses to natural signals: Maximally informative dimensions (2004) Neural Comput., 16, pp. 223-250
  • Shen, K., Tootoonian, S., Laurent, G., Encoding of mixtures in a simple olfactory system (2013) Neuron, 80, pp. 1246-1262
  • Shepard, R.N., Toward a universal law of generalization for psychological science (1987) Science, 237, pp. 1317-1323
  • Sinakevitch, I., Mustard, J.A., Smith, B.H., Distribution of the octopamine receptor AmOA1 in the honey bee brain (2011) PLoS ONE, 6, p. e14536
  • Sinakevitch, I.T., Smith, A.N., Locatelli, F., Huerta, R., Bazhenov, M., Smith, B.H., Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster) (2013) Front. Syst. Neurosci., 7, p. 70
  • Smith, B.H., An analysis of blocking in odorant mixtures: An increase but not a decrease in intensity of reinforcement produces unblocking (1997) Behav. Neurosci., 111, pp. 57-69
  • Smith, B.H., Burden, C.M., A proboscis extension response protocol for investigating behavioral plasticity in insects: Application to basic, biomedical, and agricultural research (2014) J. Vis. Exp., p. e51057
  • Smith, B.H., Menzel, R., An analysis of variability in the feeding motor program of the honey bee; The role of learning in releasing a modal action pattern (1989) Ethology, 82, pp. 68-81
  • Smith, B.H., Menzel, R., The use of electromyogram recordings to quantify odourant discrimination in the honey bee, Apis mellifera (1989) J. Insect Physiol., 35, pp. 369-375
  • Smith, B.H., Wright, G.A., Daly, K.S., Learning-based recognition and discrimination of floral odors (2006) The Biology of Floral Scents, pp. 263-295. , (ed. N. Dudareva and E. Pichersky), Boca Raton, FL: CRC Press
  • Stopfer, M., Jayaraman, V., Laurent, G., Intensity versus identity coding in an olfactory system (2003) Neuron, 39, pp. 991-1004
  • Su, C.-Y., Menuz, K., Carlson, J.R., Olfactory perception: Receptors, cells, and circuits (2009) Cell, 139, pp. 45-59
  • Theis, N., Raguso, R.A., The effect of pollination on floral fragrance in thistles (2005) J. Chem. Ecol., 31, pp. 2581-2600
  • Wilson, D.A., Linster, C., Neurobiology of a simple memory (2008) J. Neurophysiol., 100, pp. 2-7
  • Wilson, D.A., Best, A.R., Sullivan, R.M., Plasticity in the olfactory system: Lessons for the neurobiology of memory (2004) Neuroscientist, 10, pp. 513-524
  • Wright, G.A., Skinner, B.D., Smith, B.H., Ability of honeybee, Apis mellifera, to detect and discriminate odors of varieties of canola (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus) (2002) J. Chem. Ecol., 28, pp. 721-740
  • Wright, G.A., Lutmerding, A., Dudareva, N., Smith, B.H., Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (Apis mellifera) (2005) J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 191, pp. 105-114
  • Wright, G.A., Thomson, M.G.A., Smith, B.H., Odour concentration affects odour identity in honeybees (2005) Proc. R. Soc. B Biol. Sci., 272, pp. 2417-2422
  • Wright, G.A., Carlton, M., Smith, B.H., A honeybee's ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration (2009) Behav. Neurosci., 123, pp. 36-43

Citas:

---------- APA ----------
Locatelli, F.F., Fernandez, P.C. & Smith, B.H. (2016) . Learning about natural variation of odor mixtures enhances categorization in early olfactory processing. Journal of Experimental Biology, 219(17), 2752-2762.
http://dx.doi.org/10.1242/jeb.141465
---------- CHICAGO ----------
Locatelli, F.F., Fernandez, P.C., Smith, B.H. "Learning about natural variation of odor mixtures enhances categorization in early olfactory processing" . Journal of Experimental Biology 219, no. 17 (2016) : 2752-2762.
http://dx.doi.org/10.1242/jeb.141465
---------- MLA ----------
Locatelli, F.F., Fernandez, P.C., Smith, B.H. "Learning about natural variation of odor mixtures enhances categorization in early olfactory processing" . Journal of Experimental Biology, vol. 219, no. 17, 2016, pp. 2752-2762.
http://dx.doi.org/10.1242/jeb.141465
---------- VANCOUVER ----------
Locatelli, F.F., Fernandez, P.C., Smith, B.H. Learning about natural variation of odor mixtures enhances categorization in early olfactory processing. J. Exp. Biol. 2016;219(17):2752-2762.
http://dx.doi.org/10.1242/jeb.141465