Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Insects in general, and Drosophila in particular, are much more capable of surviving anoxia than vertebrates, and the mechanisms involved are of considerable biomedical and ecological interest. Temperature is likely to strongly affect both the rates of damage occurring in anoxia and the recovery processes in normoxia, but as yet there is no information on the effect of this crucial variable on recovery rates from anoxia in any animal. We studied the effects of temperature, and thus indirectly of metabolic flux rates, on survival and recovery times of individual male Drosophila melanogaster following anoxia and O2 reperfusion. Individual flies were reared at 25° and exposed to an anoxic period of 7.5, 25, 42.5 or 60?min at 20, 25 or 30°. Before, during and after anoxic exposure the flies' metabolic rates (MRs), rates of water loss and activity indices were recorded. Temperature strongly affected the MR of the flies, with a Q10 of 2.21. Temperature did not affect the slope of the relationship between time to recovery and duration of anoxic exposure, suggesting that thermal effects on damage and repair rates were similar. However, the intercept of that relationship was significantly lower (i.e. recovery was most rapid) at 25°, which was the rearing temperature. When temperatures during exposure to anoxia and during recovery were switched, recovery times matched those predicted from a model in which the accumulation and clearance of metabolic end-products share a similar dependence on temperature. ©2011. Published by The Company of Biologists Ltd.

Registro:

Documento: Artículo
Título:Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster
Autor:Schilman, P.E.; Waters, J.S.; Harrison, J.F.; Lighton, J.R.B.
Filiación:Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
Section of Organismal, Integrative, and Systems Biology, School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, United States
Department of Biological Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4004, United States
Sable Systems International, 6000 S. Eastern Blvd Bldg 1, Las Vegas, NV 89119, United States
Palabras clave:Insect; Ischemia; O2 production; Reperfusion damage; Temperature; oxygen; animal; anoxia; article; Drosophila melanogaster; instrumentation; male; metabolism; methodology; photochemistry; physiology; spirometry; survival rate; temperature; Animals; Anoxia; Drosophila melanogaster; Male; Oxygen; Photochemistry; Spirometry; Survival Rate; Temperature; Animalia; Drosophila melanogaster; Hexapoda; Vertebrata
Año:2011
Volumen:214
Número:8
Página de inicio:1271
Página de fin:1275
DOI: http://dx.doi.org/10.1242/jeb.052357
Título revista:Journal of Experimental Biology
Título revista abreviado:J. Exp. Biol.
ISSN:00220949
CODEN:JEBIA
CAS:oxygen, 7782-44-7; Oxygen, 7782-44-7
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00220949_v214_n8_p1271_Schilman.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220949_v214_n8_p1271_Schilman

Referencias:

  • Azad, P., Zhou, D., Russo, E., Haddad, G.G., Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster (2009) PLoS One, 4, pp. e5371
  • Berrigan, D., Partridge, L., Influence of temperature and activity on the metabolic rate of adult Drosophila melanogaster (1997) Comparative Biochemistry and Physiology - A Physiology, 118 (4), pp. 1301-1307. , DOI 10.1016/S0300-9629(97)00030-3, PII S0300962997000303
  • Crill, W.D., Huey, R.B., Gilchrist, G.W., Within- and between-generation effects of temperature on the morphology and physiology of Drosophila melanogaster (1996) Evolution, 50, pp. 1205-1218
  • Feala, J.D., Coquin, L., McCulloch, A.D., Paternostro, G., Flexibility in energy metabolism supports hypoxia tolerance in drosophila flight muscle: metabolic and computational systems analysis (2007) Mol. Syst. Biol., 3, p. 99
  • Frazier, M.R., Woods, H.A., Harrison, J.F., Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster (2001) Physiological and Biochemical Zoology, 74 (5), pp. 641-650. , DOI 10.1086/322172
  • Gibbs, A.G., Louie, A.K., Ayala, J.A., Effects of temperature on cuticular lipids and water balance in a desert Drosophila: Is thermal acclimation beneficial? (1998) Journal of Experimental Biology, 201 (1), pp. 71-80
  • Gibert, P., Huey, R.B., Gilchrist, G.W., Locomotor performance of Drosophila melanogaster: Interactions among developmental and adult temperatures, age, and geography (2001) Evolution, 55 (1), pp. 205-209
  • Harrison, J.F., Haddad, G.G., Effects of oxygen on growth and size: Synthesis of molecular, organismal and evolutionary studies with Drosophila melanogaster (2011) Annu. Rev. Physiol., 73, pp. 131-139
  • Kanaan, A., Farahani, R., Douglas, R.M., Lamanna, J.C., Haddad, G.G., Effect of chronic continuous or intermittent hypoxia and reoxygenation on cerebral capillary density and myelination (2006) Am. J. Physiol. Regul. Integr. Comp. Physiol., 290, pp. R1105-R1114
  • Klok, C.J., Harrison, J.F., Atmospheric hypoxia limits selection for large body size in insects (2009) PLoS One, 4, pp. e3876
  • Klok, C.J., Kaiser, A., Lighton, J.R.B., Harrison, J.F., Critical oxygen partial pressures and maximal tracheal conductances for Drosophila melanogaster reared for multiple generations in hypoxia or hyperoxia (2010) J. Insect Physiol., 56, pp. 461-469
  • Krishnan, S.N., Sun, Y.A., Mohsenin, A., Wyman, R.J., Haddad, G.G., Behavioral and electrophysiologic responses of Drosophila melanogaster to prolonged periods of anoxia (1997) J. Insect Physiol., 43, pp. 203-210
  • Lighton, J.R.B., (2008) Measuring Metabolic Rates: A Manual for Scientists, , Oxford: Oxford University Press
  • Lighton, J.R.B., Schilman, P.E., Oxygen reperfusion damage in an insect (2007) PLoS One, 2, pp. e1267
  • Lighton, J.R.B., Turner, R.J., Thermolimit respirometry: An objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus (2004) Journal of Experimental Biology, 207 (11), pp. 1903-1913. , DOI 10.1242/jeb.00970
  • Lighton, J.R.B., Schuman, P.E., Holway, D.A., The hyperoxic switch: Assessing respiratory water loss rates in tracheate arthropods with continuous gas exchange (2004) Journal of Experimental Biology, 207 (25), pp. 4463-4471. , DOI 10.1242/jeb.01284
  • Makarieva, A.M., Gorshkov, V.G., Li, B.-L., Chown, S.L., Size- and temperature-independence of minimum life-supporting metabolic rates (2006) Funct. Ecol., 20, pp. 83-96
  • Merkey, A.B., Gibbs, A.G., Hoshizaki, D.K., (2008) The U-Shaped Metabolic Curve of Insect Metamorphosis: Substrate Utilization Patterns and Proximate Causes, , San Diego: 49th Annual Drosophila Research Conference
  • Overgaard, J., Tomcala, A., Sørensen, J.C., Holmstrup, M., Krogh, P.H., Simek, P., Kostál, V., Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster (2008) J. Insect Physiol., 54, pp. 619-629
  • Schilman, P.E., Lighton, J.R.B., Holway, D.A., Respiratory and cuticular water loss in insects with continuous gas exchange: Comparison across five ant species (2005) Journal of Insect Physiology, 51 (12), pp. 1295-1305. , DOI 10.1016/j.jinsphys.2005.07.008, PII S0022191005001630
  • Van Voorhies, W.A., Metabolic function in Drosophila melanogaster in response to hypoxia and pure oxygen (2009) J. Exp. Biol., 212, pp. 3132-3141
  • Zar, J.H., (1984) Biostatistical Analysis, , 2nd edn. London:Prentice-Hall International Editions

Citas:

---------- APA ----------
Schilman, P.E., Waters, J.S., Harrison, J.F. & Lighton, J.R.B. (2011) . Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster. Journal of Experimental Biology, 214(8), 1271-1275.
http://dx.doi.org/10.1242/jeb.052357
---------- CHICAGO ----------
Schilman, P.E., Waters, J.S., Harrison, J.F., Lighton, J.R.B. "Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster" . Journal of Experimental Biology 214, no. 8 (2011) : 1271-1275.
http://dx.doi.org/10.1242/jeb.052357
---------- MLA ----------
Schilman, P.E., Waters, J.S., Harrison, J.F., Lighton, J.R.B. "Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster" . Journal of Experimental Biology, vol. 214, no. 8, 2011, pp. 1271-1275.
http://dx.doi.org/10.1242/jeb.052357
---------- VANCOUVER ----------
Schilman, P.E., Waters, J.S., Harrison, J.F., Lighton, J.R.B. Effects of temperature on responses to anoxia and oxygen reperfusion in Drosophila melanogaster. J. Exp. Biol. 2011;214(8):1271-1275.
http://dx.doi.org/10.1242/jeb.052357