Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Behavioral responses to looming stimuli have been studied in many vertebrate and invertebrate species, but neurons sensitive to looming have been investigated in very few animals. In this paper we introduce a new experimental model using the crab Chasmagnathus granulatus, which allows investigation of the processes of looming detection and escape decision at both the behavioral and neuronal levels. By analyzing the escape response of the crab in a walking simulator device we show that: (i) a robust and reliable escape response can be elicited by computer-generated looming stimuli in all tested animals; (ii) parameters such as distance, speed, timing and directionality of the escape run, are easy to record and quantify precisely in the walking device; (iii) although the magnitude of escape varies between animals and stimulus presentations, the timing of the response is remarkably consistent and does not habituate at 3 min stimulus intervals. We then study the response of neurons from the brain of the crab by means of intracellular recordings in the intact animal and show that: (iv) two subclasses of previously identified movement detector neurons from the lobula (third optic neuropil) exhibit robust and reliable responses to the same looming stimuli that trigger the behavioral response; (v) the neurons respond to the object approach by increasing their rate of firing in a way that closely matches the dynamics of the image expansion. Finally, we compare the neuronal with the behavioral response showing that: (vi) differences in the neuronal responses to looming, receding or laterally moving stimuli closely reflect the behavioral differences to such stimuli; (vii) during looming, the crab starts to run soon after the looming-sensitive neurons begin to increase their firing rate. The increase in the running speed during stimulus approach faithfully follows the increment in the firing rate, until the moment of maximum stimulus expansion. Thereafter, the neurons abruptly stop firing and the animal immediately decelerates its run. The results are discussed in connection with studies of responses to looming stimuli in the locust.

Registro:

Documento: Artículo
Título:Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae)
Autor:Oliva, D.; Medan, V.; Tomsic, D.
Filiación:Laboratorio de Neurobiología de la Memoria, Depto. Fisiología, Biología Molecular Y Celular, IFIBYNE-CONICET, Buenos Aires 1428, Argentina
Palabras clave:Chasmagnathus granulatus; Crustacea; Escape response; Intracellular recording; Looming detection; Looming sensitive neurons; Visual behavior; animal; Argentina; article; Brachyura; brain; comparative study; electrophysiology; escape behavior; male; nerve cell; photostimulation; physiology; vision; Animals; Argentina; Brachyura; Brain; Electrophysiology; Escape Reaction; Male; Neurons; Photic Stimulation; Visual Perception; Animalia; Chasmagnathus granulata; Crustacea; Decapoda (Crustacea); Grapsidae; Invertebrata; Vertebrata
Año:2007
Volumen:210
Número:5
Página de inicio:865
Página de fin:880
DOI: http://dx.doi.org/10.1242/jeb.02707
Título revista:Journal of Experimental Biology
Título revista abreviado:J. Exp. Biol.
ISSN:00220949
CODEN:JEBIA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220949_v210_n5_p865_Oliva

Referencias:

  • Barnes, W.J.P., Nalbach, H.O., Eye movements in freely moving crabs: Their sensory basis and possible role in flow-field analysis (1993) Comp. Biochem. Physiol, 104 A, pp. 675-693
  • Berón de Astrada, M., Tomsic, D., Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura) (2002) J. Comp. Physiol. A, 188, pp. 539-551
  • Beron de Astrada, M., Sztarker, J., Tomsic, D., Visual interneurons of the crab Chasmagnathus studied by intracellular recordings in vivo (2001) J. Comp. Physiol. A, 187, pp. 37-44
  • Borst, A., Fly visual interneurons responsive to image expansion (1991) Zool. Jb. Physiol, 95, pp. 305-313
  • Borst, A., Bahde, S., Spatio-temporal integration of motion - a simple strategy of safe landing in flies (1988) Naturwissenshaften, 75, pp. 265-267
  • Cannicci, S., Ruwa, R.K., Vannini, M., Homing experiments in the tree-climbing crab Sesarma leptosoma (Decapoda, Grapsidae) (1997) Ethology, 103, pp. 935-944
  • Copello, S., Favero, M., Foraging ecology of Olrog's gull Larus atlanticus in Mar Chiquita lagoon (Buenos Aires, Argentina): Are there age-related differences? (2001) Bird Conserv. Int, 11, pp. 175-188
  • Dahmen, H.J., A simple apparatus to investigate the orientation of walking insects (1980) Experientia, 36, pp. 685-687
  • Escalante, R., Notes on the Uruguayan population of Larus Belcheri (1966) Condor, 68, pp. 507-510
  • Evans, C.S., Macedonia, J.M., Marler, P., Effect of apparent size and speed on the response of chickens, Gallus gallus, to computer-generated simulations of aerial predators (1993) Anim. Behav, 46, pp. 1-11
  • Gabbiani, F., Krapp, H.G., Laurent, G., Computation of object approach by a wide-field, motion-sensitive neuron (1999) J. Neurosci, 19, pp. 1122-1141
  • Gabbiani, F., Krapp, H.G., Koch, C., Laurent, G., Multiplicative computation in a visual neuron sensitive to looming (2002) Nature, 420, pp. 320-324
  • Gallagher, S.P., Northmore, D.P., Responses of the teleostean nucleus isthrni to looming objects and other moving stimuli (2006) Vis. Neurosci, 23, pp. 209-219
  • Glantz, R.M., Defense reflex and motion detector responsiveness to approaching targets: The motion detector trigger to the defense reflex pathway (1974) J. Comp. Physiol, 95, pp. 297-314
  • Gray, J.R., Habituated visual neurons in locusts remain sensitive to novel looming objects (2005) J. Exp. Biol, 208, pp. 2515-2532
  • Gray, J.R., Lee, J.K., Robertson, R.M., Activity of descending contralateral movement detector neurons and collision avoidance behavior in response to head-on visual stimuli in locust (2001) J. Comp. Physiol. A, 187, pp. 115-129
  • Hatsopoulus, N., Gabbiani, F., Laurent, G., Elementary computation of object approach by a wide-field visual neuron (1995) Science, 270, pp. 1000-1003
  • Hemmi, J.M., Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation (2005) Anim. Behav, 69, pp. 603-614
  • Hemmi, J.M., Predatory avoidance in fiddler crab: 2. The visual cues (2005) Anim. Behav, 69, pp. 615-625
  • Hemmi, J.M., Zeil, J., Animals as prey: Perceptual limitations and behavioral options (2005) Mar. Ecol. Prog. Ser, 287, pp. 274-278
  • Kramer, D.L., Bonenfant, M., Direction of predator approach and the decision to flee to a refuge (1997) Anim. Behav, 54, pp. 289-295
  • Jablonski, P.G., Strausfeld, N.J., Exploitation of an ancient escape circuit by an avian predator: Prey sensitivity to model predator display in the field (2000) Brain Behav. Evol, 56, pp. 94-106
  • Jennions, M.D., Backwell, P.R., Murai, M., Christy, J.H., Hiding behavior in fiddler crabs: How long should prey hide in response to a potential predator? (2003) Anim. Behav, 66, pp. 251-257
  • Johnson, A.P., Horseman, B.G., Macauley, M.W., Barnes, W.J., PC-based visual stimuli for behavioural and electrophysiological studies of optic flow field detection (2002) J. Neurosci. Methods, 114, pp. 51-61
  • Land, M.F., Layne, J., The visual control of behaviour in fiddler crabs. I. Resolution, thresholds and the role of the horizon (1995) J. Comp. Physiol. A, 177, pp. 81-90
  • Land, M.F., Layne, J., The visual control of behavior in fiddler crabs. II. Tracking control systems in courtship and defense (1995) J. Comp. Physiol. A, 177, pp. 91-1003
  • Layne, J., Wicklein, M., Dodge, F.A., Barlow, R.B., Prediction of maximum allowable retinal slip speed in the fiddler crab (1997) Uca pugilator. Biol. Bull, 193, pp. 202-203
  • Lee, D.N., A theory of visual control of braking based on information about time-to-collision (1976) Perception, 5, pp. 437-459
  • Lee, D.N., Reddish, P.E., Plummeting gannets: A paradigm of ecolological optics (1981) Nature, 293, pp. 293-294
  • Maier, J.X., Neuhoff, J.G., Logothetis, N.K., Ghazanfar, A.A., Multisensory integration of looming signals by rhesus monkeys (2004) Neuron, 43, pp. 177-181
  • Medan, V., Oliva, D. and Tomsic, D. (2004). Preferences for direction of movement on visual neurons of a crab. The 7th Congress of the International Society for Neuroethology. Abstract book p. 123, P0142.Nyborg, Nyborg, Denmark; Nalbach, H.O., Discontinuous turning reaction during escape in soldier crabs (1990) J. Exp. Biol, 148, pp. 483-487
  • Nalbach, H.O., Visually elicited escape in crabs (1990) Frontiers in Crustacean Neurobiology, pp. 165-172. , ed. K. Wiese, W. D. Krent, J. Tautz, H. Reichert and B. Mulloney, pp, Basel: Birkhauser Verlag
  • Nalbach, H.O., Nalbach, G., Distribution of optokinetic sensitivity over the eyes of crabs: Its relation to habitat and possible role in flow-field analysis (1987) J. Comp. Physiol. A, 160, pp. 127-135
  • Regan, D., Hamstra, S.J., Dissociation of discrimination thresholds for time to contact and for rate of angular expansion (1993) Vision Res, 33, pp. 447-462
  • Rind, F.C., Non-directional, movement sensitive neurones of the locust optic lobe (1987) J. Comp. Physiol. A, 161, pp. 477-494
  • Rind, F.C., Intracellular characterization of neurons in the locust brain signaling impending collisions (1996) J. Neurophysiol, 75, pp. 986-995
  • Rind, F.C., Santer, R.D., Collision avoidance and a looming sensitive neuron: Size matters but biggest is not necessarily best (2004) Proc. Biol. Sci, 271, pp. 27-29
  • Rind, F.C., Simmons, P.J., Orthopteran DCMD neurons: A reevaluation of responses to moving objects. I. Selective responses to approaching objects (1992) J. Neurophysiol, 68, pp. 1654-1666
  • Rind, F.C., Simmons, P.J., Seeing what is coming: Building collision-sensitive neurons (1999) Trends Neurosci, 22, pp. 215-220
  • Sandeman, D.C., Regionalization in the eye of the crab Leptograpsus variegatus: Eye movements evoked by a target moving in different parts of the visual field (1978) J. Comp. Physiol, 123, pp. 299-306
  • Santer, R.D., Simmons, P.J., Rind, F.C., Gliding behavior elicited by lateral looming stimuli in flying locust (2005) J. Comp. Physiol. A, 191, pp. 61-73
  • Santer, R.D., Rind, F.C., Stafford, R., Simmons, P.J., The role of an identified looming-sensitive neuron in triggering a flying locust's escape (2006) J. Neurophysiol, 95, pp. 3391-3400
  • Simmons, P.J., Rind, F.C., Orthopteran DCMD neurons: A reevaluation of responses to moving objects. II. Critical cues for detecting approaching objects (1992) J. Neurophysiol, 68, pp. 1667-1681
  • Simmons, P.J., Rind, F.C., Responses to object approach by a wide field visual neurone, the LGMD2 of the locust: Characterization and image cues (1997) J. Comp. Physiol. A, 180, pp. 203-214
  • Strausfeld, N.J., The evolution of crustacean and insect optic lobes and the origins of chiasmata (2005) Arth. Struct. Dev, 34, pp. 235-256
  • Spivak, E.D., Sanchez, N., Prey selection by Larus belcheri atlanticus in Mar Chiquita lagoon, Buenos Aires, Argentina: A possible explanation for its discontinuous distribution (1992) Rev. Chil. Hist. Nat, 65, pp. 209-220
  • Sztarker, J., Tomsic, D., Binocular visual integration in the crustacean nervous system (2004) J. Comp. Physiol. A, 190, pp. 951-962
  • Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of the optic lobes that support motion detection in a semiterrestrial crab (2005) J. Comp. Neurol, 493, pp. 396-412
  • Tammero, L.F., Dickinson, M.H., Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly (2002) Drosophila melanogaster. J. Exp. Biol, 2005, pp. 2785-2798
  • Tomsic, D., Pedreira, M.E., Romano, A., Hermite, G., Maldonado, H., Context-US association as a determinant of long-term habituation in the crab Chasmagnathus (1998) Anim. Learn. Behav, 26, pp. 196-209
  • Tomsic, D., Berón de Astrada, M., Sztarker, J., Identification of individual neurons reflecting short- and long-term visual memory in an arthropod (2003) J. Neurosci, 23, pp. 8539-8546
  • Wang, Y.C., Frost, B.J., Time to collision' is signalled by neurons in the nucleus rotundus in pigeons (1992) Nature, 365, pp. 236-238
  • Wicklein, M., Strausfeld, N.J., Organization and significance of neurons that detect change of visual depth in the hawk moth Manduca sexta (2000) J. Comp. Neurol, 424, pp. 356-376
  • Wu, L.Q., Niu, Y.Q., Yang, J., Wang, S.R., Tectal neurons signal impending collision of looming objects in the pigeon (2005) Eur. J. Neurosci, 22, pp. 2325-2331
  • Yamamoto, K., Nakata, M., Nakagawa, H., Input and output characteristics of collision avoidance behavior in the frog Rana catesbeiana (2003) Brain Behav. Evol, 62, pp. 201-211
  • Zeil, J., Hemmi, J.M., The visual ecology of fiddler crabs (2006) J. Comp. Physiol. A, 192, pp. 1-25
  • Zeil, J., Nalbach, G., Nalbach, H.O., Eyes, eye stalks and the visual world of semi-terrestrial crabs (1986) J. Comp. Physiol. A, 159, pp. 801-811

Citas:

---------- APA ----------
Oliva, D., Medan, V. & Tomsic, D. (2007) . Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). Journal of Experimental Biology, 210(5), 865-880.
http://dx.doi.org/10.1242/jeb.02707
---------- CHICAGO ----------
Oliva, D., Medan, V., Tomsic, D. "Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae)" . Journal of Experimental Biology 210, no. 5 (2007) : 865-880.
http://dx.doi.org/10.1242/jeb.02707
---------- MLA ----------
Oliva, D., Medan, V., Tomsic, D. "Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae)" . Journal of Experimental Biology, vol. 210, no. 5, 2007, pp. 865-880.
http://dx.doi.org/10.1242/jeb.02707
---------- VANCOUVER ----------
Oliva, D., Medan, V., Tomsic, D. Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). J. Exp. Biol. 2007;210(5):865-880.
http://dx.doi.org/10.1242/jeb.02707