Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The two-dimensional isolation oxidation of silicon is studied in the reaction-controlled limit, which corresponds to the case of initially thin oxides. This limit is both of physical relevance and one of the few regimes in which analytical progress can be made in the whole oxide region. Slowly-varying or long-wave approximations can be used to derive equations that govern the growth of the oxide interfaces (which form two moving boundaries) and the oxidation-induced stresses in the oxide. Here, these equations are solved numerically, by use of a Keller-Box discretisation scheme, complementing previously obtained asymptotic results. The numerical scheme is used to investigate the effects of the nitride-cap rigidity and the initial oxide thickness on both the lateral extent of oxidation (the so-called 'bird's beak' length) and the stresses that occur on the silicon/silicon-oxide interface. The results from the model are interpreted in dimensional form so that quantitative comparisons can be made with experimental results. The two-dimensional isolation oxidation of silicon is studied in the reaction-controlled limit, which corresponds to the case of initially thin oxides. This limit is both of physical relevance and one of the few regimes in which analytical progress can be made in the whole oxide region. Slowly-varying or long-wave approximations can be used to derive equations that govern the growth of the oxide interfaces (which form two moving boundaries) and the oxidation-induced stresses in the oxide. Here, these equations are solved numerically, by use of a Keller-Box discretization scheme, complementing previously obtained asymptotic results. The numerical scheme is used to investigate the effects of the nitride-cap rigidity and the initial oxide thickness on both the lateral extent of oxidation (the so-called `bird's beak' length) and the stresses that occur on the silicon/silicon-oxide interface. The results from the model are interpreted in dimensional form so that quantitative comparisons can be made with experimental results.

Registro:

Documento: Artículo
Título:Oxidation-induced stresses in the isolation oxidation of silicon
Autor:Evans, J.D.; Vynnycky, M.; Ferro, S.P.
Ciudad:Dordrecht, Netherlands
Filiación:Department of Mathematics, University of Wales, Aberystwyth, Ceredigion, SY23 3BZ, United Kingdom
Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
Department of Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
INFIP-CONICET, Departamento de Fisica, Ciudad Universitaria, Pab. 1, 1428 Buenos Aires, Argentina
Palabras clave:Keller-Box discretisation scheme; Numerical finite differences; Oxidation-induced stresses; Silicon oxidation; Approximation theory; Finite difference method; Interfaces (materials); Mathematical models; Problem solving; Silicon; Isolation oxidation; Keller-Box discretization method; Oxidation; oxidation
Año:2000
Volumen:38
Número:2
Página de inicio:191
Página de fin:218
DOI: http://dx.doi.org/10.1023/A:1004737420926
Título revista:Journal of Engineering Mathematics
Título revista abreviado:J. Eng. Math.
ISSN:00220833
CODEN:JLEMA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220833_v38_n2_p191_Evans

Referencias:

  • Appels, J.A., Kooi, E., Paffen, M.M., Schatorjé, J.J.H., Verkuylen, W.H.C.G., Local oxidation of silicon and its application in semiconductor-device technology (1970) Philips Res. Rep., 25, pp. 118-132
  • King, J.R., (1986) Mathematical Aspects of Semiconductor Process Modelling, , D. Phil. Thesis, Oxford University 408pp
  • King, J.R., The isolation oxidation of silicon (1989) SIAM J. Appl. Math., 49, pp. 264-280
  • Tayler, A.B., King, J.R., Free boundaries in semi-conductor fabrication (1990) Free Boundary Problems: Theory and Applications, 1, pp. 243-259. , K.H. Hoffman and J. Sprekels, Pitman research notes in mathematics series, Longman Sci. and Tech
  • King, J.R., The isolation oxidation of silicon - The reaction-controlled case (1989) SIAM J. Appl. Math., 49, pp. 1064-1080
  • Deal, B.E., Grove, A.S., General relationship for the thermal oxidation of silicon (1965) J. Appl. Phys., 36, pp. 3770-3778
  • Cebeci, T., Bradshaw, P., (1977) Momentum Transfer in Boundary Layers, , Washington: Hemisphere Publishing Corporation 391pp
  • Poncet, A., Finite-element simulation of local oxidation of silicon (1985) IEEE Trans. Computer-Aided Design, CAD-4, pp. 41-53
  • Tamura, M., Sunami, H., Generation of dislocations induced by chemical vapor deposited Si3N4 films on silicon (1972) Jpn. J. Appl. Phys., 11, pp. 1097-1105
  • Isomae, S., Stress in silicon at Si3N4/Si O2 film edges and viscoelastic behaviour of Si O2 films (1985) J. Appl. Phys., 57, pp. 216-223
  • Isomae, S., Yamamoto, S., A new two-dimensional silicon oxidation model (1987) IEEE Trans. CAD., 6, pp. 410-416
  • Evans, J.D., King, J.R., Tayler, A.B., Finite length mask effects in the isolation oxidation of silicon (1997) IMA J. Appl. Math., pp. 121-146. , 58
  • Powell, R.J., Ligenza, J.R., Schneider, M.S., Selective oxidation of silicon in low-temperature high-pressure steam' (1974) IEEE Trans. Electron Dev., ED-21, pp. 636-640
  • Hess, D.W., Deal, B.E., Kinetics of the thermal oxidation of silicon in O2/HCl mixtures (1977) J. Electrochem. Soc., 124, pp. 735-739
  • Sze, S.M., (1988) VLSI Technology, , New York: McGraw-Hill 654pp
  • Hu, S.M., Thermal oxidation of silicon: Chemisorption and linear rate constant (1984) J. Appl. Phys., 55, pp. 4095-4105
  • Massoud, H.Z., Plummer, J.D., Irene, E.A., Thermal Oxidation of Silicon in Dry Oxygen Growth-Rate Enhancement in the Thin Regime. I. Experimental Results (1985) J. Electrochem. Soc., 132, pp. 2685-2693
  • Massoud, H.Z., Plummer, J.D., Irene, E.A., Thermal Oxidation of Silicon in Dry Oxygen Growth-Rate Enhancement in the Thin Regime. II. Physical Mechanisms (1985) J. Electrochem. Soc., 132, pp. 2693-2700
  • Camelin, C., Demazeau, G., Straboni, A., Buevoz, J.L., High pressure dry oxidation kinetics of silicon -evidence of a highly stressed Si O2 structure (1986) Appl. Phys. Lett., 48, pp. 1211-1213
  • Irene, E.A., Ghez, R., Thermal oxidation of silicon: New experimental results and models (1987) Appl. Surf. Sci., 30, pp. 1-16
  • Kao, D.-B., McVittie, J.P., Nix, W.D., Saraswat, K.C., Two-dimensional thermal oxidation of silicon-I. Experiments (1987) IEEE Trans. Electron Dev., ED-34, pp. 1008-1017
  • Lewis, E.A., Irene, E.A., The effect of surface orientation on silicon oxidation kinetics (1987) J. Electrochem. Soc., 134, pp. 2332-2339
  • Irene, E.A., Models for the oxidation of silicon (1988) CRC Critical Reviews in Solid State and Materials Sciences, 14, pp. 175-223
  • Katz, L.E., Oxidation (1988) VLSI Technology. 2nd Edition, pp. 98-140. , S. M. Sze (ed.) New York: McGraw-Hill
  • Umimoto, H., Odanaka, S., Nakao, I., Numerical simulation of stress-dependent oxide growth at convex and concave corners of trench structures (1989) IEEE Electron Dev. Lett., 10, pp. 330-332
  • Umimoto, H., Odanaka, S., Nakao, I., Esaki, H., Numerical modeling of nonplanar oxidation coupled with stress effects (1989) IEEE Trans. Computer-Aided Design, 8, pp. 599-607
  • Susa, M., Nagata, K., Thermal oxidation of silicon substrates through oxygen diffusion (1991) Materials Sci. Engng. A., 146, pp. 51-62
  • EerNisse, E.P., Viscous flow of thermal Si O2 (1977) Appl. Phys. Lett., 30, pp. 290-293
  • Chin, D., Oh, S.-Y., Hu, S.-M., Dutton, R.W., Moll, J.L., Two-dimensional oxidation (1983) IEEE Trans. Electron Dev., ED-30, pp. 744-749
  • Wilson, L.O., Marcus, R.B., Oxidation of curved silicon surfaces (1987) J. Electrochem. Soc., 134, pp. 481-490
  • Bassous, E., Yu, H.N., Maniscalco, V., Topology of silicon structures with recessed Si O2 (1976) J. Electrochem. Soc., 123, pp. 1729-1737
  • Bohg, A., Gaind, A.K., Influence of film stress and thermal oxidation on the generation of dislocations in silicon (1978) Appl. Phys. Lett., 33, pp. 895-897
  • Magdo, I., Bohg, A., Framed recessed oxide scheme for dislocation-free planar Si structures (1978) J. Electrochem. Soc., 125, pp. 932-936
  • Isomae, S., Tamaki, Y., Yajima, A., Nanba, M., Maki, M., Dislocation generation at Si3N4 film edges on silicon substrates and viscoelastic behaviour of Si O2 films (1979) J. Electrochem. Soc., 126, pp. 1014-1019
  • Shibata, K., Taniguchi, K., Generation mechanism of dislocations in local oxidation of silicon (1980) J. Electrochem. Soc., 127, pp. 1383-1387
  • Tamaki, Y., Isomae, S., Mizuo, S., Higuchi, H., Evaluation of dislocation generation at Si3N4 film edges on silicon substrates by selective oxidation (1981) J. Electrochem. Soc., 128, pp. 644-648
  • Tamaki, Y., Isomae, S., Mizuo, S., Higuchi, H., Evaluation of dislocation generation on silicon substrates by selective oxidation (1983) J. Electrochem. Soc., 130, pp. 2266-2270
  • Tung, T.L., Antoniadis, D.A., A boundary integral equation approach to oxidation modeling (1985) IEEE Trans. Electron Dev., ED-32, pp. 1954-1959
  • Singh, R., McGruer, N.E., Rajkanan, K., Weiss, J.H., A new growth enhancement in thin Si O2 formed by rapid isothermal oxidation of silicon (1988) J. Vac. Sci. Technol. A., 6, pp. 1480-1483
  • Chiou, Y.-L., Sow, C.H., Ports, K., Generalized linear-parabolic law: A mathematical model for thermal oxidation of silicon (1989) IEEE Electron Dev. Lett., 10, pp. 1-3
  • Huang, C.K., Jaccodine, R.J., Impurity dependence of film-edge-induced dislocations in silicon (1989) J. Appl. Phys., 66, pp. 531-535
  • Umimoto, H., Odanaka, S., Three-Dimensional numerical simulation of local oxidation of silicon (1991) IEEE Trans. Electron Dev., 38, pp. 505-511
  • Kenkare, P.U., Mazuré, C., Hayden, J.D., Pfiester, J.R., Ko, J., Kirsch, H.C., Ajuria, S.A., Vuong, T., Scaling of poly-encapsulated LOCOS for 0.35 μm CMOS technology (1994) IEEE Trans. Electron Dev., 41, pp. 56-62
  • Park, T., Ahn, S.J., Ahn, S.T., A Novel Local Oxidation of Silicon (LOCOS)-Type isolation technology free of the field oxide thinning effect (1994) Jpn. J. Appl. Phys., 33, pp. 435-439
  • Irene, E.A., Tierney, E., Angilello, J., A viscous flow model to explain the appearance of high density thermal Si O2 at low oxidation temperatures (1982) J. Electrochem. Soc., 129, pp. 2594-2597
  • EerNisse, E.P., Stress in thermal Si O2 during growth (1979) Appl. Phys. Lett., 35, pp. 8-10
  • Tan, T.Y., Gösele, U., Growth kinetics of oxidation-induced stacking faults in silicon: A new concept (1981) Appl. Phys. Lett., 39, pp. 86-88
  • Tiller, W.A., On the kinetics of the thermal oxidation of silicon. IV. The two-layer film (1983) J. Electrochem. Soc., 130, pp. 501-506
  • Wu, T.-C., Stacy, W.T., Ritz, K.N., The influence of the LOCOS processing parameters on the shape of the bird's beak structure (1983) J. Electrochem. Soc., 130, pp. 1563-1566
  • Marcus, R.B., Sheng, T.T., The oxidation of shaped silicon surfaces (1982) J. Electrochem. Soc., 129, pp. 1278-1282
  • Morita, M., Ohmi, T., Characterization and Control of Native Oxide on Silicon (1994) Jpn. J. Appl. Phys., 33, pp. 370-374
  • Vanhellemont, J., Claeys, C., A quantitative model for silicon yield stress calculations at thin film edges (1988) J. Electrochem. Soc., 135, pp. 1509-1517
  • Matsumoto, H., Fukuma, M., Numerical modeling of nonuniform Si thermal oxidation (1985) IEEE Trans. Electron Dev., ED-32, pp. 132-140
  • Isomae, S., Oxidation-induced stress in aLOCOS structure (1986) IEEE Electron Dev. Lett., EDL-7, pp. 368-370
  • Kao, D.-B., McVittie, J.P., Nix, W.D., Saraswat, K.C., Two-dimensional thermal oxidation of silicon-II. Experiments (1988) IEEE Trans. Electron Dev., ED-35, pp. 25-37
  • Sutardja, P., Oldham, W.G., Modeling of stress effects in silicon oxidation (1989) IEEE Trans. Electron Dev., ED-36, pp. 2415-2421

Citas:

---------- APA ----------
Evans, J.D., Vynnycky, M. & Ferro, S.P. (2000) . Oxidation-induced stresses in the isolation oxidation of silicon. Journal of Engineering Mathematics, 38(2), 191-218.
http://dx.doi.org/10.1023/A:1004737420926
---------- CHICAGO ----------
Evans, J.D., Vynnycky, M., Ferro, S.P. "Oxidation-induced stresses in the isolation oxidation of silicon" . Journal of Engineering Mathematics 38, no. 2 (2000) : 191-218.
http://dx.doi.org/10.1023/A:1004737420926
---------- MLA ----------
Evans, J.D., Vynnycky, M., Ferro, S.P. "Oxidation-induced stresses in the isolation oxidation of silicon" . Journal of Engineering Mathematics, vol. 38, no. 2, 2000, pp. 191-218.
http://dx.doi.org/10.1023/A:1004737420926
---------- VANCOUVER ----------
Evans, J.D., Vynnycky, M., Ferro, S.P. Oxidation-induced stresses in the isolation oxidation of silicon. J. Eng. Math. 2000;38(2):191-218.
http://dx.doi.org/10.1023/A:1004737420926