Artículo

Litchman, E.; de Tezanos Pinto, P.; Edwards, K.F.; Klausmeier, C.A.; Kremer, C.T.; Thomas, M.K. "Global biogeochemical impacts of phytoplankton: A trait-based perspective" (2015) Journal of Ecology. 103(6):1384-1396
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Phytoplankton are key players in the global carbon cycle, contributing about half of global primary productivity. Within the phytoplankton, functional groups (characterized by distinct traits) have impacts on other major biogeochemical cycles, such as nitrogen, phosphorus and silica. Changes in phytoplankton community structure, resulting from the unique environmental sensitivities of these groups, may significantly alter elemental cycling from local to global scales. We review key traits that distinguish major phytoplankton functional groups, how they affect biogeochemistry and how the links between community structure and biogeochemical cycles are modelled. Finally, we explore how global environmental change will affect phytoplankton communities, from the traits of individual species to the relative abundance of functional groups, and how that, in turn, may alter biogeochemical cycles. Synthesis. We can increase our mechanistic understanding of the links between the community structure of primary producers and biogeochemistry by focusing on traits determining functional group responses to the environment (response traits) and their biogeochemical functions (effect traits). Identifying trade-offs including allometric and phylogenetic constraints among traits will help parameterize predictive biogeochemical models, enhancing our ability to anticipate the consequences of global change. We can increase our mechanistic understanding of the links between the community structure of primary producers and biogeochemistry by focusing on traits at different organisational levels that determine the responses to the environment (response traits) and their biogeochemical functions (effect traits). Identifying trade-offs including allometric and phylogenetic constraints among traits will help parameterize predictive biogeochemical models, enhancing our ability to anticipate the consequences of global change. © 2015 British Ecological Society.

Registro:

Documento: Artículo
Título:Global biogeochemical impacts of phytoplankton: A trait-based perspective
Autor:Litchman, E.; de Tezanos Pinto, P.; Edwards, K.F.; Klausmeier, C.A.; Kremer, C.T.; Thomas, M.K.
Filiación:Kellogg Biological Station, Michigan State University, 3700 E Gull Lake Dr., Hickory Corners, MI 49060, United States
Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, United States
Departamento de Ecología, Genetica y Evolucion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEBA (CONICET-UBA), Buenos Aires, C1428EHA, Argentina
Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI 96822, United States
Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, United States
Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520-8106, United States
Atmospheric and Oceanic Sciences Program, Princeton University, 300 Forrestal Road, Sayre Hall, Princeton, NJ 08544, United States
Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf, 8600, Switzerland
Palabras clave:Aquatic plant ecology; Biogeochemical cycles; Cell size; Functional groups; Global change; Phytoplankton community structure; Trade-offs; allometry; aquatic plant; biogeochemical cycle; biogeochemistry; community structure; functional group; global change; nitrogen; parameterization; phosphorus; phylogenetics; phytoplankton; primary production; relative abundance; trade-off
Año:2015
Volumen:103
Número:6
Página de inicio:1384
Página de fin:1396
DOI: http://dx.doi.org/10.1111/1365-2745.12438
Título revista:Journal of Ecology
Título revista abreviado:J. Ecol.
ISSN:00220477
CODEN:JECOA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00220477_v103_n6_p1384_Litchman

Referencias:

  • Agawin, N.S.R., Rabouille, S., Veldhuis, M.J.W., Servatius, L., Hol, S., van Overzee, H.M.J., Huisman, J., Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species (2007) Limnology and Oceanography, 52, pp. 2233-2248
  • Antia, A.N., Koeve, W., Fischer, G., Blanz, T., Schulz Bull, D., Schölten, J., Neuer, S., Peinert, R., Basin-wide particulate carbon flux in the Atlantic Ocean: regional export patterns and potential for atmospheric CO2 sequestration (2001) Global Biogeochemical Cycles, 15, pp. 845-862
  • Archibald, J.M., Keeling, P.J., Recycled plastids: a 'green movement' in eukaryotic evolution (2002) Trends in Genetics, 18, pp. 577-584
  • Armstrong, R.A., Grazing limitation and nutrient limitation in marine ecosystems - steady-state solutions of an ecosystem model with multiple food chains (1994) Limnology and Oceanography, 39, pp. 597-608
  • Arrigo, K.R., Marine microorganisms and global nutrient cycles (2005) Nature, 437, pp. 349-355
  • Assmy, P., Smetacek, V., Montresor, M., Klaas, C., Henjes, J., Strass, V.H., Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current (2013) Proceedings of the National Academy of Sciences, 110, pp. 20633-20638
  • Aumont, O., Maier-Reimer, E., Blain, S., Monfray, P., An ecosystem model of the global ocean including Fe, Si, P colimitations (2003) Global Biogeochemical Cycles, 17, pp. 1-15
  • Ayers, G.P., Cainey, J.M., The CLAW hypothesis: a review of the major developments (2007) Environmental Chemistry, 4, pp. 366-374
  • Beardall, J., Stojkovic, S., Larsen, S., Living in a high CO2 world: impacts of global climate change on marine phytoplankton (2009) Plant Ecology & Diversity, 2, pp. 191-205
  • Beaulieu, C., Henson, S.A., Sarmiento, J.L., Dunne, J.P., Doney, S.C., Rykaczewski, R.R., Bopp, L., Factors challenging our ability to detect long-term trends in ocean chlorophyll (2013) Biogeosciences, 10, pp. 2711-2724
  • Behrenfeld, M.J., O'Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Boss, E.S., Climate-driven trends in contemporary ocean productivity (2006) Nature, 444, pp. 752-755
  • Berman-Frank, I., Cullen, J.T., Shaked, Y., Sherrell, R.M., Falkowski, P.G., Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium (2001) Limnology and Oceanography, 46, pp. 1249-1260
  • Blackford, J.C., Allen, J.I., Gilbert, F.J., Ecosystem dynamics at six contrasting sites: a generic modelling study (2004) Journal of Marine Systems, 52, pp. 191-215
  • Bopp, L., Aumont, O., Cadule, P., Alvain, S., Gehlen, M., Response of diatoms distribution to global warming and potential implications: a global model study (2005) Geophysical Research Letters, 32, p. L19606
  • Bown, P.R., Lees, J.A., Young, J.R., Calcareous nannoplankton evolution and diversity through time (2004) Coccolithophores: From Molecular Processes to Global Impact, pp. 481-508. , (eds H.R. Thierstein & J.R. Young) - Springer, Berlin Heidelberg, Germany
  • Boyce, D.G., Lewis, M.R., Worm, B., Global phytoplankton decline over the past century (2010) Nature, 466, pp. 591-596
  • Boyd, P.W., Framing biological responses to a changing ocean (2013) Nature, 3, pp. 530-533
  • Boyd, P.W., Hutchins, D.A., Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change (2012) Marine Ecology Progress Series, 470, pp. 125-135
  • Boyd, P.W., Strzepek, R., Fu, F., Hutchins, D.A., Environmental control of open-ocean phytoplankton groups: now and in the future (2010) Limnology and Oceanography, 55, pp. 1353-1376
  • Boyd, P.W., Rynearson, T.A., Armstrong, E.A., Fu, F., Hayashi, K., Hu, Z., Marine phytoplankton temperature versus growth responses from polar to tropical waters - outcome of a scientific community-wide study (2013) PLoS ONE, 8, p. e63091
  • Boyd, P.W., Lennartz, S.T., Glover, D.M., Doney, S.C., Biological ramifications of climate-change-mediated oceanic multi-stressors (2015) Nature Climate Change, 5, pp. 71-79
  • Brown, C.W., Podestá, G.P., Remote sensing of coccolithophore blooms in the western South Atlantic Ocean (1997) Remote Sensing of Environment, 4257, pp. 83-91
  • Bruggeman, J., A phylogenetic approach to the estimation of phytoplankton traits (2011) Journal of Phycology, 47, pp. 52-65
  • Bruggeman, J., Kooijman, S., A biodiversity-inspired approach to aquatic ecosystem modeling (2007) Limnology and Oceanography, 52, pp. 1533-1544
  • Buitenhuis, E.T., Hashioka, T., Le Quere, C., Combined constraints on global ocean primary production using observations and models (2013) Global Biogeochemical Cycles, 27, pp. 847-858
  • Canfield, D.E., Glazer, A.N., Falkowski, P.G., The evolution and future of Earth's Nitrogen cycle (2010) Science, 330, pp. 192-196
  • Catling, D., Zahnle, K., Evolution of atmospheric oxygen (2002) Encyclopaedia of Atmospheric Sciences, pp. 754-761. , eds J. Holton, J. Curry & J. Pyle) - Academic Press, New York
  • Charlson, R.J., Lovelock, J.E., Andreae, M.O., Warren, S.G., Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate (1987) Nature, 326, pp. 655-661
  • Chisholm, S.W., Phytoplankton size (1992) Primary Productivity and Biogeochemical Cycles in the Sea, pp. 213-237. , eds P.G. Falkowski & A.D. Woodhead) - Plenum Press, New York, NY
  • Clark, J.R., Lenton, T.M., Williams, H.T.P., Daines, S.J., Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size (2013) Limnology and Oceanography, 58, pp. 1008-1022
  • Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Long-term Climate Change: Projections, Commitments and Irreversibility (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 1029-1136. , In (eds T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley) - Cambridge University Press, New York, NY
  • Crain, C.M., Kroeker, K., Halpern, B.S., Interactive and cumulative effects of multiple human stressors in marine systems (2008) Ecology Letters, 11, pp. 1304-1315
  • Cuvelier, M.L., Allen, A.E., Monier, A., McCrow, J.P., Messié, M., Tringe, S.G., Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 14679-14684
  • Czerny, J., Barcelos e Ramos, J., Riebesell, U., Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena (2009) Biogeosciences, 6, pp. 1865-1875
  • Delwiche, C.F., Tracing the thread of plastid diversity through the tapestry of life (1999) The American Naturalist, 154, pp. S164-S177
  • Deutsch, C., Weber, T., Nutrient ratios as a tracer and driver of ocean biogeochemistry (2012) Annual Review of Marine Science, 4, pp. 113-141
  • Diaz, R.J., Rosenberg, R., Spreading dead zones and consequences for marine ecosystems (2008) Science (New York, NY), 321, pp. 926-929
  • Doney, S.C., Fabry, V.J., Feely, R.A., Kleypas, J.A., Ocean acidification: the other CO2 problem (2009) Annual Review of Marine Science, 1, pp. 169-192
  • Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, C.A., Climate change impacts on marine ecosystems (2012) Annual Review of Marine Science, 4, pp. 11-37
  • Dutkiewicz, S., Follows, M.J., Bragg, J.G., Modeling the coupling of ocean ecology and biogeochemistry (2009) Global Biogeochemical Cycles, 23, p. GB4017
  • Dutkiewicz, S., Scott, J.R., Follows, M.J., Winners and losers: ecological and biogeochemical changes in a warming ocean (2013) Global Biogeochemical Cycles, 27, pp. 463-477
  • Edwards, K.F., Klausmeier, C.A., Litchman, E., A three-way trade-off maintains functional diversity under variable resource supply (2013) The American naturalist, 182, pp. 786-800
  • Edwards, K.F., Thomas, M.K., Klausmeier, C.A., Litchman, E., Allometric scaling and taxonomic variation in nutrient utilization traits and growth rates of marine and freshwater phytoplankton (2012) Limnology and Oceanography, 57, pp. 554-566
  • Edwards, K.F., Thomas, M.K., Klausmeier, C.A., Litchman, E., Light and growth in marine phytoplankton: allometric, taxonomic, and environmental variation (2015) Limnology and Oceanography, 60, pp. 540-552
  • Evans, G.T., Parslow, J.S., A model of annual plankton cycles (1985) Biological Oceanography, 3, pp. 327-347
  • Falkowski, P.G., Katz, M.E., Knoll, A.H., Quigg, A., Raven, J.A., Schofield, O., Taylor, F.J.R., The evolution of modern eukaryotic phytoplankton (2004) Science, 305, pp. 354-360
  • Fani, R., Gallo, R., Lio, P., Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nife and nifN genes (2000) Journal of Molecular Evolution, 51, pp. 1-11
  • Fasham, M.J.R., Ducklow, H.W., McKelvie, S.M., A nitrogen-based model of plankton dynamics in the oceanic mixed layer (1990) Journal of Marine Research, 48, pp. 591-639
  • Field, C.B., Behrenfeld, M.J., Randerson, J.T., Falkowski, P.G., Primary production of the biosphere: integrating terrestrial and oceanic components (1998) Science, 281, pp. 237-240
  • Finkel, Z.V., Katz, M.E., Wright, J.D., Schofield, O.M.E., Falkowski, P.G., Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic (2005) PNAS, 102, pp. 8927-8932
  • Finkel, Z.V., Beardall, J., Flynn, K.J., Quigg, A., Rees, T.A.V., Raven, J.A., Phytoplankton in a changing world: cell size and elemental stoichiometry (2009) Journal of Plankton Research, 32, pp. 119-137
  • Finkel, Z.V., Beardall, J., Flynn, K.J., Quigg, A., Rees, T.A.V., Raven, J.A., Phytoplankton in a changing world: cell size and elemental stoichiometry (2010) Journal of Plankton Research, 32, pp. 119-137
  • Flynn, K.J., Do we need complex mechanistic photoacclimation models for phytoplankton? (2003) Limnology and Oceanography, 48, pp. 2243-2249
  • Follows, M.J., Dutkiewicz, S., Grant, S., Chisholm, S.W., Emergent biogeography of microbial communities in a model ocean (2007) Science, 315, pp. 1843-1846
  • Franks, P.J.S., NPZ models of plankton dynamics: their construction, coupling to physics, and application (2002) Journal of Oceanography, 58, pp. 379-387
  • Glibert, P.M., Bronk, D.A., Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria, Trichodesmium spp (1994) Applied and Environmental Microbiology, 60, pp. 3996-4000
  • Gregg, W.W., Casey, N.W., Modeling coccolithophores in the global oceans (2007) Deep Sea Research Part II, 54, pp. 447-477
  • Gregg, W.W., Ginoux, P., Schopf, P.S., Casey, N.W., Phytoplankton and iron: validation of a global three-dimensional ocean biogeochemical model (2003) Deep-Sea Research Part II, 50, pp. 3143-3169
  • Grover, J.P., Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model (1991) The American Naturalist, 138, pp. 811-835
  • Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D'Agrosa, C., A global map of human impact on marine ecosystems (2008) Science, 319, pp. 948-952
  • Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.W., Medina-Elizade, M., Global temperature change (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 14288-14293
  • Henson, S.A., Sarmiento, J.L., Dunne, J.P., Bopp, L., Lima, I.D., Doney, S.C., John, J., Beaulieu, C., Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity (2010) Biogeosciences, 7, pp. 621-640
  • Hoegh-Guldberg, O., Bruno, J.F., The impact of climate change on the world's marine ecosystems (2010) Science, 328, pp. 1523-1528
  • Hoffmann, L.J., Breitbarth, E., Boyd, P.W., Hunter, K.A., Influence of ocean warming and acidification on trace metal biogeochemistry (2012) Marine Ecology Progress Series, 470, pp. 191-205
  • Holland, H.D., The oxygenation of the atmosphere and oceans (2006) Philosophical transactions of the Royal Society B: Biological Sciences, 361, pp. 903-915
  • Holmén, K., The Global Carbon Cycle (1992) Global Biogeochemical Cycles, pp. 239-262. , eds S.S. Butcher, R.J. Charlson, G.H. Orians & G.V. Wolfe) - Academic Press, London
  • Hood, R.R., Laws, E.A., Armstrong, R.A., Bates, N.R., Brown, C.W., Carlson, C.A., Pelagic functional group modeling: progress, challenges and prospects (2006) Deep-Sea Research Part II: Topical Studies in Oceanography, 53, pp. 459-512
  • Hutchins, D.A., Fu, F.-X., Webb, E.A., Walworth, N., Tagliabue, A., Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations (2013) Nature Geoscience, 6, pp. 790-795
  • Irigoien, X., Phytoplankton blooms: a 'loophole' in microzooplankton grazing impact? (2005) Journal of Plankton Research, 27, pp. 313-321
  • Irwin, A.J., Oliver, M.J., Are ocean deserts getting larger? (2009) Geophysical Research Letters, 36, p. L18609
  • Isley, A.E., Abbott, D.H., Plume-related mafic volcanism and the deposition of banded iron formation (1999) Journal of Geophysical Research, 104, pp. 15461-15477
  • Jin, X., Gruber, N., Dunne, J.P., Sarmiento, J.L., Armstrong, R.A., Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions (2006) Global Biogeochemical Cycles, 20, p. GB2015
  • Johnson, Z.I., Zinser, E.R., Coe, A., McNulty, N.P., Woodward, E.M.S., Chisholm, S.W., Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients (2006) Science, 311, pp. 1737-1740
  • Katz, M.E., Finkel, Z.V., Grzebyk, D., Knoll, A.H., Falkowski, P.G., Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton (2004) Annual Review of Ecology Evolution and Systematics, 35, pp. 523-556
  • Kiørboe, T., Turbulence, phytoplankton cell size, and the structure of pelagic food webs (1993) Advances in Marine Biology, 29, pp. 1-72
  • Klausmeier, C.A., Litchman, E., Daufresne, T., Levin, S.A., Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton (2004) Nature, 429, pp. 171-174
  • Knoll, A.H., The geological consequences of evolution (2003) Geobiology, 1, pp. 3-14
  • Kooistra, W.H., Medlin, L.K., Evolution of the diatoms (Bacillariophyta). IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record (1996) Molecular Phylogenetics and Evolution, 6, pp. 391-407
  • Kriest, I., Khatiwala, S., Oschlies, A., Towards an assessment of simple global marine biogeochemical models of different complexity (2010) Progress in Oceanography, 86, pp. 337-360
  • Kudela, R.M., Does horizontal mixing explain phytoplankton dynamics? (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 18235-18236
  • Kustka, A.B., Sañudo-Wilhelmy, S.A., Carpenter, E.J., Capone, D., Burns, J., Sunda, W.G., Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS 101): comparison with nitrogen fixation rates and iron:carbon ratios of field populations (2003) Limnology and Oceanography, 48, pp. 1869-1884
  • Kwiatkowski, L., Yool, A., Allen, J.I., Anderson, T.R., Barciela, R., Buitenhuis, E.T., iMarNet: an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework (2014) Biogeosciences, 11, pp. 7291-7304
  • Lavorel, S., Garnier, E., Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail (2002) Functional Ecology, 16, pp. 545-556
  • Le Quéré, C., Harrison, S.P., Prentice, I.C., Buitenhuis, E.T., Aumont, O., Bopp, L., Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models (2005) Global Change Biology, 11, pp. 2016-2040
  • Lenton, T.M., Klausmeier, C.A., Biotic stoichiometric controls on the deep ocean N: P ratio (2007) Biogeosciences, 4, pp. 353-367
  • Letelier, R.M., Karl, D.M., Role of Trichodesmium spp. in the productivity of the subtropical North Pacific Ocean (1996) Marine Ecology Progress Series, 133, pp. 263-273
  • Litchman, E., Klausmeier, C.A., Yoshiyama, K., Contrasting size evolution in marine and freshwater diatoms (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 2665-2670
  • Litchman, E., Klausmeier, C.A., Miller, J.R., Schofield, O.M., Falkowski, P.G., Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities (2006) Biogeosciences, 3, pp. 585-606
  • Litchman, E., Klausmeier, C.A., Trait-based community ecology of phytoplankton (2008) Annual Review of Ecology, Evolution, and Systematics, 39, pp. 615-639
  • Litchman, E., Klausmeier, C.A., Schofield, O.M., Falkowski, P.G., The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level (2007) Ecology Letters, 10, pp. 1170-1181
  • Litchman, E., Edwards, K.F., Klausmeier, C.A., Thomas, M.K., Phytoplankton niches, traits and eco-evolutionary responses to global environmental change (2012) Marine Ecology Progress Series, 470, pp. 235-248
  • Mackas, D.L., Brief communications arising (2012) Nature, 472, p. E1
  • Mahaffey, C., Michaels, A.F., Capone, D.G., The conundrum of marine N2 fixation (2005) American Journal of Science, 305, pp. 546-595
  • Marañón, E., Cell size as a key determinant of phytoplankton metabolism and community structure (2014) Annual Review of Marine Science, 7, pp. 241-264
  • Marañón, E., Cermeño, P., López-Sandoval, D.C., Rodríguez-Ramos, T., Sobrino, C., Huete-Ortega, M., Blanco, J.M., Rodríguez, J., Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use (2012) Ecology Letters, 16, pp. 371-379
  • Margalef, R., Life-forms of phytoplankton as survival alternatives in an unstable environment (1978) Oceanologica Acta, 1, pp. 493-509
  • McQuatters-Gollop, A., Reid, P.C., Edwards, M., Burkill, P.H., Castellani, C., Batten, S., Gieskes, W., Is there a decline in marine phytoplankton? (2011) Nature, 472, pp. E6-E7
  • Monteiro, F.M., Dutkiewicz, S., Follows, M.J., Biogeographical controls on the marine nitrogen fixers (2011) Global Biogeochemical Cycles, 25, p. GB2003
  • Monteiro, F.M., Follows, M.J., Dutkiewicz, S., Distribution of diverse nitrogen fixers in the global ocean (2010) Global Biogeochemical Cycles, 24, p. GB3017
  • Moore, J.K., Doney, S.C., Kleypas, J.A., Glover, D.M., Fung, I.Y., An intermediate complexity marine ecosystem model for the global domain (2002) Deep-Sea Research II, 49, pp. 403-462
  • Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd, P.W., Processes and patterns of oceanic nutrient limitation (2013) Nature Geoscience, 6, pp. 701-710
  • Morán, X.A.G., López-Urrutia, A., Calvo-Diaz, A., Li, W.K.W., Increasing importance of small phytoplankton in a warmer ocean (2010) Global Change Biology, 16, pp. 1137-1144
  • Mulholland, M.R., Bernhardt, P.W., The effect of growth rate, phosphorus concentration, and temperature on N2 fixation, carbon fixation, and nitrogen release in continuous cultures of Trichodesmium IMS101 (2005) Limnology and Oceanography, 50, pp. 839-849
  • Nelson, D.M., Tréguer, P., Brzezinski, M.A., Leynaert, A., Quéguiner, B., Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation (1995) Global Biogeochemical Cycles, 9, pp. 359-372
  • Normand, P., Gouy, M., Cournoyer, C., Simonet, P., Nucleotide sequence of nifD from Frankia alni strain ARI3: phylogenetic inferences (1992) Molecular Biology and Evolution, 9, pp. 495-506
  • Olson, J.M., Blankenship, R.E., Thinking about the evolution of photosynthesis (2004) Photosynthesis Research, 80, pp. 373-386
  • Pasciak, W.J., Gavis, J., Transport limitation of nutrient uptake in phytoplankton (1974) Limnology and Oceanography, 19, pp. 881-889
  • Passow, U., Carlson, C.A., The biological pump in a high CO2 world (2012) Marine Ecology Progress Series, 470, pp. 249-271
  • Quigg, A., Finkel, Z.V., Irwin, A.J., Rosenthal, Y., Ho, T.-Y., Reinfelder, J.R., Schofield, O.M.E., Falkowski, P.G., The evolutionary inheritance of elemental stoichiometry in marine phytoplankton (2003) Nature, 425, pp. 291-294
  • Quinn, P.K., Bates, T.S., The case against climate regulation via oceanic phytoplankton sulphur emissions (2011) Nature, 480, pp. 51-56
  • Rap, A., Scott, C.E., Spracklen, D.V., Bellouin, N., Forster, P.M., Carslaw, K.S., Schmidt, A., Mann, G., Natural aerosol direct and indirect radiative effects (2013) Geophysical Research Letters, 40, pp. 3297-3301
  • Raymond, J., Siefert, J.L., Staples, C.R., Blankenship, R.E., The natural history of nitrogen fixation (2004) Molecular Biology and Evolution, 21, pp. 541-554
  • Redfield, A.C., The biological control of chemical factors in the environment (1958) American Scientist, 46, pp. 205-221
  • Rhee, G.-Y., Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake (1978) Limnology and Oceanography, 23, pp. 10-25
  • Richardson, A.J., In hot water: zooplankton and climate change (2008) Journal du Conseil, 65, pp. 279-295
  • Riebesell, U., Effects of CO2 enrichment on marine phytoplankton (2004) Journal of Oceanography, 60, pp. 719-729
  • Rosing, M.T., Bird, D.K., Sleep, N.H., Glassley, W., Albarede, F., The rise of continents - An essay on the geologic consequences of photosynthesis (2006) Palaeo, 232, pp. 99-113
  • Rost, B., Riebesell, U., Burkhardt, S., Sültemeyer, D., Carbon acquisition of bloom-forming marine phytoplankton (2003) Limnology and Oceanography, 48, pp. 55-67
  • Sarthou, G., Timmermans, K., Blain, S., Treguer, P., Growth physiology and fate of diatoms in the ocean: a review (2005) Journal of Sea Research, 53, pp. 25-42
  • Schopf, J.W., (1983) Earth′s Earliest Biosphere: Its Origin and Evolution, , Princeton University Press, Princeton
  • Simpson, F.B., Burris, R.H., A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase (1984) Science, 224, pp. 1095-1097
  • Sims, P.A., Mann, D.G., Medlin, L.K., Evolution of the diatoms: insights from fossil, biological and molecular data (2006) Phycologia, 45, pp. 361-402
  • Smetacek, V., Diatoms and the ocean carbon cycle (1999) Protist, 150, pp. 25-32
  • Smith, S.L., Pahlow, M., Merico, A., Wirtz, K.W., Optimality-based modeling of planktonic organisms (2011) Limnology and Oceanography, 56, pp. 2080-2094
  • Staal, M., Meysman, F.J.R., Stal, L.J., Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans (2003) Nature, 425, pp. 504-507
  • Staley, J.T., Orians, G.H., Evolution and the Biosphere (1992) Global Biogeochemical Cycles, pp. 21-54. , eds S.S. Butcher, R.J. Charlson, G.H. Orians & G.V. Wolfe) - Academic Press, London
  • Stock, C.A., Dunne, J.P., John, J.G., Drivers of trophic amplification of ocean productivity trends in a changing climate (2014) Biogeosciences, 11, pp. 7125-7135
  • Swan, B.K., Tupper, B., Sczyrba, A., Lauro, F.M., Martinez-Garcia, M., González, J.M., Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean (2013) PNAS, 110, pp. 11463-11468
  • Teoh, M.-L., Phang, S.-M., Chu, W.-L., Response of Antarctic, temperate, and tropical microalgae to temperature stress (2012) Journal of Applied Phycology, 25, pp. 285-297
  • de Tezanos Pinto, P., Litchman, E., The interactive effects of N: P ratios and light on nitrogen-fixer abundance (2010) Oikos, 119, pp. 567-575
  • Thingstad, T.F., Ovreas, L., Egge, J.K., Lovdal, T., Heldal, M., Use of non-limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? (2005) Ecology Letters, 8, pp. 675-682
  • Thomas, M.K., Kremer, C.T., Klausmeier, C.A., Litchman, E., A global pattern of thermal adaptation in marine phytoplankton (2012) Science, 338, pp. 1085-1088
  • Tilman, D., (1982) Resource Competition and Community Structure, , Princeton University Press, Princeton, NJ, USA
  • Tréguer, P.J., De La Rocha, C.L., The world ocean silica cycle (2013) Annual Review of Marine Science, 5, pp. 477-501
  • Tyrrell, T., The relative influences of nitrogen and phosphorus on oceanic primary production (1999) Nature, 400, pp. 525-531
  • Ward, B., Dutkiewicz, S., Jahn, O., Follows, M.J., A size-structured food-web model for the global ocean (2012) Limnology and Oceanography, 57, pp. 1877-1891
  • Ward, B., Dutkiewicz, S., Moore, C.M., Follows, M.J., Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation (2013) Limnology and Oceanography, 58, pp. 2059-2075
  • Weber, T.S., Deutsch, C., Ocean nutrient ratios governed by plankton biogeography (2010) Nature, 467, pp. 550-554
  • Wisecaver, J.H., Hackett, J.D., Dinoflagellate genome evolution (2011) Annual Review of Microbiology, 65, pp. 369-387
  • Yoon, H.S., Hackett, Y.D., Ciniglia, C., Pinto, G., Bhattacharya, D., A molecular timeline for the origin of photosynthetic eukaryotes (2004) Molecular Biology and Evolution, 21, pp. 809-818
  • Yvon-Durocher, G., Dossena, M., Allen, A.P., Trimmer, M., Woodward, G., Temperature and the biogeography of algal stoichiometry (2015) Global Ecology and Biogeography, 5, pp. 562-570
  • Zehr, J.P., Kudela, R.M., Nitrogen cycle of the open ocean: from genes to ecosystems (2011) Annual Review of Marine Science, 3, pp. 197-225

Citas:

---------- APA ----------
Litchman, E., de Tezanos Pinto, P., Edwards, K.F., Klausmeier, C.A., Kremer, C.T. & Thomas, M.K. (2015) . Global biogeochemical impacts of phytoplankton: A trait-based perspective. Journal of Ecology, 103(6), 1384-1396.
http://dx.doi.org/10.1111/1365-2745.12438
---------- CHICAGO ----------
Litchman, E., de Tezanos Pinto, P., Edwards, K.F., Klausmeier, C.A., Kremer, C.T., Thomas, M.K. "Global biogeochemical impacts of phytoplankton: A trait-based perspective" . Journal of Ecology 103, no. 6 (2015) : 1384-1396.
http://dx.doi.org/10.1111/1365-2745.12438
---------- MLA ----------
Litchman, E., de Tezanos Pinto, P., Edwards, K.F., Klausmeier, C.A., Kremer, C.T., Thomas, M.K. "Global biogeochemical impacts of phytoplankton: A trait-based perspective" . Journal of Ecology, vol. 103, no. 6, 2015, pp. 1384-1396.
http://dx.doi.org/10.1111/1365-2745.12438
---------- VANCOUVER ----------
Litchman, E., de Tezanos Pinto, P., Edwards, K.F., Klausmeier, C.A., Kremer, C.T., Thomas, M.K. Global biogeochemical impacts of phytoplankton: A trait-based perspective. J. Ecol. 2015;103(6):1384-1396.
http://dx.doi.org/10.1111/1365-2745.12438