Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Using six-surfaced cells the space-derivative terms in the Lagrangian equations are reduced to simple algebraic expressions, that require volume and surface variables. In order to preserve the thermodynamic relation for internal energy for each cell, the surface magnitudes are chosen from the neighbor cells in the following way: the velocity from the volume velocity of the cell "ahead" while the pressure from the volume pressure of the cell "behind." Together with a simple predictor-corrector scheme a stable (Courant number 0.5) and fast code may be written. Although it is less accurate than other methods, it exhibits some interesting features: it retains the advantages of sided methods for imposing boundary conditions, and it preserves the simplicity of the explicit schemes (a fact particularly useful to vectorize it). © 1990.

Registro:

Documento: Artículo
Título:A three-dimensional lagrangian method for fluid dynamics
Autor:Bilbao, L.
Filiación:Laboratorio de Fisica, Plasma - FCEN Universidad de Buenos Aires, Ciudad Universitaria - Pab. I, 1428 Buenos Aires, Argentina
Año:1990
Volumen:91
Número:2
Página de inicio:361
Página de fin:380
DOI: http://dx.doi.org/10.1016/0021-9991(90)90042-Y
Título revista:Journal of Computational Physics
Título revista abreviado:J. Comput. Phys.
ISSN:00219991
CODEN:JCTPA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219991_v91_n2_p361_Bilbao

Referencias:

  • Amsden, Hirt, (1973) Los Alamos Scientific Laboratory Report LA-5100
  • Pracht, Brackbill, (1976) Los Alamos Scientific Laboratory Report LA-6342
  • Amsden, Ruppel, (1981) Los Alamos Scientific Laboratory Report LA-8905
  • Pracht, (1975) J. Comput. Phys., 17, p. 132
  • Chu, Sereny, (1974) J. Comput. Phys., 15, p. 476
  • Turkel, (1983) Comput. Fluids, 11, p. 121
  • Schulz, Two-Dimensional Lagrangian Hydrodynamics Difference Equations (1964) Method of Computational Physics, 3, p. 1. , B.J. Adler, S. Fernbach, M. Rotenberg, 3rd ed., Academic Press, New York
  • Wilkins, Use of artificial viscosity in multidimensional fluid dynamic calculations (1980) Journal of Computational Physics, 36, p. 281
  • Cameron, (1966) J. Comput. Phys., 1, p. 1
  • Von Neumann, Richtmyer, A Method for the Numerical Calculation of Hydrodynamic Shocks (1950) Journal of Applied Physics, 21, p. 232
  • Sod, (1978) J. Comput. Phys., 27, p. 1
  • Vanleer, (1979) J. Comput. Phys., 32, p. 101
  • Matsuo, Ohya, Fujiwara, Kudoh, (1988) J. Comput. Phys., 75, p. 384
  • Dukowicz, (1988) J. Comput. Phys., 74, p. 493
  • Harlow, (1970) Los Alamos Scientific Laboratory Report LA-DC-9996
  • Thames, Thompson, Mastin, Walker, (1977) J. Comput. Phys., 24, p. 245

Citas:

---------- APA ----------
(1990) . A three-dimensional lagrangian method for fluid dynamics. Journal of Computational Physics, 91(2), 361-380.
http://dx.doi.org/10.1016/0021-9991(90)90042-Y
---------- CHICAGO ----------
Bilbao, L. "A three-dimensional lagrangian method for fluid dynamics" . Journal of Computational Physics 91, no. 2 (1990) : 361-380.
http://dx.doi.org/10.1016/0021-9991(90)90042-Y
---------- MLA ----------
Bilbao, L. "A three-dimensional lagrangian method for fluid dynamics" . Journal of Computational Physics, vol. 91, no. 2, 1990, pp. 361-380.
http://dx.doi.org/10.1016/0021-9991(90)90042-Y
---------- VANCOUVER ----------
Bilbao, L. A three-dimensional lagrangian method for fluid dynamics. J. Comput. Phys. 1990;91(2):361-380.
http://dx.doi.org/10.1016/0021-9991(90)90042-Y