Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The lobula plate is part of the lobula complex, the third optic neuropil, in the optic lobes of insects. It has been extensively studied in dipterous insects, where its role in processing flow-field motion information used for controlling optomotor responses was discovered early. Recently, a lobula plate was also found in malacostracan crustaceans. Here, we provide the first detailed description of the neuroarchitecture, the input and output connections and the retinotopic organization of the lobula plate in a crustacean, the crab Neohelice granulata using a variety of histological methods that include silver reduced staining and mass staining with dextran-conjugated dyes. The lobula plate of this crab is a small elongated neuropil. It receives separated retinotopic inputs from columnar neurons of the medulla and the lobula. In the anteroposterior plane, the neuropil possesses four layers defined by the arborizations of such columnar inputs. Medulla projecting neurons arborize mainly in two of these layers, one on each side, while input neurons arriving from the lobula branch only in one. The neuropil contains at least two classes of tangential elements, one connecting with the lateral protocerebrum and the other that exits the optic lobes toward the supraesophageal ganglion. The number of layers in the crab's lobula plate, the retinotopic connections received from the medulla and from the lobula, and the presence of large tangential neurons exiting the neuropil, reflect the general structure of the insect lobula plate and, hence, provide support to the notion of an evolutionary conserved function for this neuropil. © 2017 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:A crustacean lobula plate: Morphology, connections, and retinotopic organization
Autor:Bengochea, M.; Berón de Astrada, M.; Tomsic, D.; Sztarker, J.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular. CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
Palabras clave:arthropod; flow-field analysis; lobula plate; mass staining; adult; animal tissue; Article; brain; controlled study; Crustacea; lobula plate; male; medulla oblongata; Neohelice granulata; nerve cell; nerve projection; neuroanatomy; neuropil; nonhuman; priority journal; supraesophageal ganglion; anatomy and histology; animal; Brachyura; metabolism; optic lobe; physiology; retina; silver staining; ultrastructure; visual system; fluorescent dye; Animals; Brachyura; Fluorescent Dyes; Male; Medulla Oblongata; Optic Lobe, Nonmammalian; Retina; Silver Staining; Visual Pathways
Año:2018
Volumen:526
Número:1
Página de inicio:109
Página de fin:119
DOI: http://dx.doi.org/10.1002/cne.24322
Título revista:Journal of Comparative Neurology
Título revista abreviado:J. Comp. Neurol.
ISSN:00219967
CODEN:JCNEA
CAS:Fluorescent Dyes
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219967_v526_n1_p109_Bengochea

Referencias:

  • Barnes, W.J., Horridge, G.A., Two-dimensional records of the eyecup movements of the crab Carcinus (1969) Journal of Experimental Biology, 50, pp. 673-682
  • Barnes, W.J.P., Barnes, P., Sensory basis and functional role of eye movements elicited during locomotion in the land crab Cardisoma guanhumi (1990) Journal of Experimental Biology, 154, pp. 99-118
  • Berón de Astrada, M., Medan, V., Tomsic, D., How visual space maps in the optic neuropils of a crab (2011) The Journal of Comparative Neurology, 519, pp. 1631-1639
  • Berón de Astrada, M., Tuthill, J.C., Tomsic, D., Physiology and morphology of sustaining and dimming neurons of the crab Chasmagnathus granulatus (Brachyura: Grapsidae) (2009) Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 195, pp. 791-798
  • Borst, A., Egelhaaf, M., Principles of visual motion detection (1989) Trends in Neurosciences, 12, pp. 297-306
  • Borst, A., Haag, J., Neural networks in the cockpit of the fly (2002) Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 188, pp. 419-437
  • Borst, A., Haag, J., Reiff, D.F., Fly motion vision (2010) Annual Review of Neuroscience, 33, pp. 49-70
  • Borst, A., Helmstaedter, M., Common circuit design in fly and mammalian motion vision (2015) Nature Neuroscience, 18, pp. 1067-1076
  • Buchner, E., Buchner, S., Bülthoff, H., Identification of [3H]deoxyglucose-labelled interneurons in the fly from serial autoradiographs (1984) Brain Research, 305, pp. 384-388
  • Buschbeck, E.K., Strausfeld, N.J., Visual motion-detection circuits in flies: Small-field retinotopic elements responding to motion are evolutionarily conserved across taxa (1996) The Journal of Neuroscience, 16, pp. 4563-4578
  • Buschbeck, E.K., Strausfeld, N.J., The relevance of neural architecture to visual performance: Phylogenetic conservation and variation in Dipteran visual systems (1997) The Journal of Comparative Neurology, 383, pp. 282-304
  • Derby, C.D., Blaustein, D.N., Morphological and physiological characterization of individual olfactory interneurons connecting the brain and eyestalk ganglia of the crayfish (1988) Journal of Comparative Physiology A, 163, pp. 777-794
  • Douglass, J.K., Strausfeld, N.J., Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits (2003) The Journal of Comparative Neurology, 457, pp. 326-344
  • Elofsson, R., Dahl, E., The optic neuropiles and chiasmata of Crustacea (1970) Zeitschrift für Zellforschung und Mikroskopische Anatomie, 107, pp. 343-360
  • Famiglietti, E.V., Kolb, H., Structural basis for ON-and OFF-center responses in retinal ganglion cells (1976) Science, 194, pp. 193-195
  • Fischbach, P.K.-F., Dittrich, A.P.M., The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure (1989) Cell and Tissue Research, 258, pp. 441-475
  • Fujiwara, T., Cruz, T.L., Bohnslav, J.P., Chiappe, M.E., A faithful internal representation of walking movements in the Drosophila visual system (2017) Nature Neuroscience, 20, pp. 72-81
  • Geiger, G., Nässel, D.R., Visual orientation behaviour of flies after selective laser beam ablation of interneurones (1981) Nature, 293, pp. 398-399
  • Haikala, V., Joesch, M., Borst, A., Mauss, A.S., Optogenetic Control of Fly Optomotor Responses (2013) Journal of Neuroscience, 33, pp. 13927-13934
  • Harzsch, S., The phylogenetic significance of crustacean optic neuropils and chiasmata: A re-examination (2002) The Journal of Comparative Neurology, 453, pp. 10-21
  • Harzsch, S., Hansson, B.S., Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell (2008) BMC Neuroscience, 9, p. 58
  • Hausen, K., Motion sensitive interneurons in the optomotor system of the fly (1982) Biological Cybernetics, 45, pp. 143-156
  • Hausen, K., Motion sensitive interneurons in the optomotor system of the fly (1982) Biological Cybernetics, 46, pp. 67-79
  • Heisenberg, M., Wonneberger, R., Wolf, R., Optomotor-blind H31-a Drosophila mutant of the lobula plate giant neurons (1978) Journal of Comparative Physiology, 124, pp. 287-296
  • Horseman, B.G., Macauley, M.W.S., Barnes, W.J.P., Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas (2011) Journal of Experimental Biology, 214, pp. 1586-1598
  • Joesch, M., Schnell, B., Raghu, S.V., Reiff, D.F., Borst, A., ON and OFF pathways in Drosophila motion vision (2010) Nature, 468, pp. 300-304
  • Johnson, A.P., Horseman, B.G., Macauley, M.W.S., Barnes, W.J.P., PC-based visual stimuli for behavioural and electrophysiological studies of optic flow field detection (2002) Journal of Neuroscience Methods, 114, pp. 51-61
  • Kern, R., Nalbach, H.O., Varjú, D., Interactions of local movement detectors enhance the detection of rotation. Optokinetic experiments with the rock crab, Pachygrapsus marmoratus (1993) Visual Neuroscience, 10, pp. 643-652
  • Kim, A.J., Fenk, L.M., Lyu, C., Maimon, G., Quantitative predictions orchestrate visual signaling in Drosophila (2017) Cell, 168, pp. 280-294.e12
  • Krapp, H.G., Egelhaaf, M., Hengstenberg, R., Binocular contributions to optic flow processing in the fly visual system (2001) Journal of Neurophysiology, 85, pp. 724-734
  • Krapp, H.G., Hengstenberg, B., Hengstenberg, R., Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly (1998) Journal of Neurophysiology, 79, pp. 1902-1917
  • Krapp, H.G., Hengstenberg, R., Estimation of self-motion by optic flow processing in single visual interneurons (1996) Nature, 384, pp. 463-466
  • Maisak, M.S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., Borst, A., A directional tuning map of Drosophila elementary motion detectors (2013) Nature, 500, pp. 212-216
  • Mauss, A.S., Meier, M., Serbe, E., Borst, A., Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision (2014) J Neurosci Off J Soc Neurosci, 34, pp. 2254-2263
  • Medan, V., Oliva, D., Tomsic, D., Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus (2007) J Neurophysiol, 98, pp. 2414-2428
  • Osorio, D., Bacon, J.P., A good eye for arthropod evolution (1994) Bioessays, 16, pp. 419-424
  • Rajashekhar, K.P., Shamprasad, V.R., Golgi analysis of tangential neurons in the lobula plate of Drosophila melanogaster (2004) Journal of Biosciences, 29, pp. 93-104
  • Sandeman, D.C., Kien, J., Erber, J., Optokinetic eye movements in the crab, Carcinus maenas (1975) Journal of Comparative Physiology, 101, pp. 259-274
  • Sandeman, D.C., Sandeman, R.E., Aitken, A.R., Atlas of serotonin-containing neurons in the optic lobes and brain of the crayfish, Cherax destructor (1988) The Journal of Comparative Neurology, 269, pp. 465-478
  • Schnell, B., Raghu, S.V., Nern, A., Borst, A., Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila (2012) Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 198, pp. 389-395
  • Sinakevitch, I., Douglass, J.K., Scholtz, G., Loesel, R., Strausfeld, N.J., Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa (2003) The Journal of Comparative Neurology, 467, pp. 150-172
  • Strausfeld, N.J., Crustacean-insect relationships: The use of brain characters to derive phylogeny amongst segmented invertebrates (1998) Brain, Behavior and Evolution, 52, pp. 186-206
  • Strausfeld, N.J., The evolution of crustacean and insect optic lobes and the origins of chiasmata (2005) Arthropod Structure & Development, 34, pp. 235-256
  • Strausfeld, N.J., Brain organization and the origin of insects: An assessment (2009) Proceedings. Biological Sciences, 276, pp. 1929-1937
  • Strausfeld, N.J., Nassel, D.R., Neuroarchitecture of brain regions that subserve the compound eyes of crustacea and insect (1980) Handbook of sensory physiology, VII/6B, pp. 1-132. , #x0026;, In, H. Autrum, (Ed.),, Berlin, Springer Verlag
  • Sztarker, J., Strausfeld, N., Andrew, D., Tomsic, D., Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus (2009) J Comp Neurol, 513, pp. 129-150
  • Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of optic lobes that support motion detection in a semiterrestrial crab (2005) The Journal of Comparative Neurology, 493, pp. 396-411
  • Sztarker, J., Tomsic, D., Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata (2014) The Journal of Comparative Neurology, 522, pp. 3177-3193
  • Tomsic, D., Maldonado, H., Central effect of morphine pretreatment on short- and long-term habituation to a danger stimulus in the crab Chasmagnathus (1990) Pharmacology, Biochemistry, and Behavior, 36, pp. 787-793

Citas:

---------- APA ----------
Bengochea, M., Berón de Astrada, M., Tomsic, D. & Sztarker, J. (2018) . A crustacean lobula plate: Morphology, connections, and retinotopic organization. Journal of Comparative Neurology, 526(1), 109-119.
http://dx.doi.org/10.1002/cne.24322
---------- CHICAGO ----------
Bengochea, M., Berón de Astrada, M., Tomsic, D., Sztarker, J. "A crustacean lobula plate: Morphology, connections, and retinotopic organization" . Journal of Comparative Neurology 526, no. 1 (2018) : 109-119.
http://dx.doi.org/10.1002/cne.24322
---------- MLA ----------
Bengochea, M., Berón de Astrada, M., Tomsic, D., Sztarker, J. "A crustacean lobula plate: Morphology, connections, and retinotopic organization" . Journal of Comparative Neurology, vol. 526, no. 1, 2018, pp. 109-119.
http://dx.doi.org/10.1002/cne.24322
---------- VANCOUVER ----------
Bengochea, M., Berón de Astrada, M., Tomsic, D., Sztarker, J. A crustacean lobula plate: Morphology, connections, and retinotopic organization. J. Comp. Neurol. 2018;526(1):109-119.
http://dx.doi.org/10.1002/cne.24322