Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Crustaceans are widely distributed and inhabit very different niches. Many of them are highly visual animals. Nevertheless, the neural composition of crustacean optic neuropils deeper than the lamina is mostly unknown. In particular, semiterrestrial crabs possess a highly developed visual system and display conspicuous visually guided behaviors. A previous study shows that the first optic neuropil, the lamina of the crab Neohelice granulata, possesses a surprisingly high number of elements in each cartridge. Here, we present a comprehensive description of individual elements composing the medulla of that same species. Using Golgi impregnation, we characterized a wide variety of cells. Only considering the class of transmedullary neurons, we describe over 50 different morphologies including small- and large-field units. Among others, we describe a type of centrifugal neuron hitherto not identified in other crustaceans or insects that probably feeds back information to every cartridge in the medulla. The possible functional role of such centrifugal elements is discussed in connection with the physiological and behavioral information on visual processing available for this crab. Taken together, the results reveal a very dense and complex neuropil in which several channels of information processing would be acting in parallel. We further examine our results considering the similarities and differences found between the layered organization and components of this crustacean medulla and the medullae of insects. © 2014 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata
Autor:Sztarker, J.; Tomsic, D.
Filiación:Laboratorio de Neurobiología de la Memoria, Dpto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IFIBYNE- CONICET), Argentina
Palabras clave:Arthropod; Crustacean; Golgi impregnation; Insect; Transmedullary cells; adult; animal behavior; animal cell; animal tissue; article; cell composition; cell structure; cell type; comparative anatomy; controlled study; crab; functional anatomy; male; medulla oblongata; Neohelice granulata; neuropil; nonhuman; optic nerve; priority journal; terrestrial species; visual system; anatomy and histology; animal; Brachyura; cytology; image processing; medulla oblongata; nerve cell; neuropil; optic nerve; physiology; silver staining; ultrastructure; Animals; Brachyura; Image Processing, Computer-Assisted; Medulla Oblongata; Neurons; Neuropil; Optic Nerve; Silver Staining; Visual Pathways
Año:2014
Volumen:522
Número:14
Página de inicio:3177
Página de fin:3193
DOI: http://dx.doi.org/10.1002/cne.23589
Título revista:Journal of Comparative Neurology
Título revista abreviado:J. Comp. Neurol.
ISSN:00219967
CODEN:JCNEA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219967_v522_n14_p3177_Sztarker

Referencias:

  • Armett-Kibel, C., Meinertzhagen, I.A., Dowling, J.E., Cellular and synaptic organization in the lamina of the dragon-fly Sympetrum rubicundulum (1977) Proc R Soc Lond Biol, 196, pp. 385-413
  • Bausenwein, B., Dittrich, A.P., Fischbach, K.F., The optic lobe of Drosophila melanogaster II. Sorting of retinotopic pathways in the medulla (1992) Cell Tissue Res, 267, pp. 17-28
  • Berón de Astrada, M., Tomsic, D., Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura) (2002) J Comp Physiol A, 188, pp. 539-551
  • Berón de Astrada, M., Tuthill, J.C., Tomsic, D., Physiology and morphology of sustaining and dimming neurons of the crab Chasmagnathus granulatus (Brachyura: Grapsidae) (2009) J Comp Physiol A, 195, pp. 791-798
  • Berón de Astrada, M., Bengochea, M., Sztarker, J., Delorenzi, A., Tomsic, D., Behaviorally related neural plasticity in the arthropod optic lobes (2013) Curr Biol CB, 23, pp. 1389-1398
  • Buschbeck, E.K., Neurobiological constraints and fly systematics: how different types of neural characters can contribute to a higher level dipteran phylogeny (2000) Evolution, 54, pp. 888-898
  • Buschbeck, E.K., Strausfeld, N.J., Visual motion-detection circuits in flies: small-field retinotopic elements responding to motion are evolutionarily conserved across taxa (1996) J Neurosci, 16, pp. 4563-4578
  • Cannicci, S., Barelli, C., Vannini, M., Homing in the swimming crab Thalamita crenata: a mechanism based on underwater landmark memory (2000) Anim Behav, 60, pp. 203-210
  • Douglass, J.K., Strausfeld, N.J., Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits (2003) J Comp Neurol, 457, pp. 326-344
  • Fischbach, P.-F., Dittrich, A.P.M., The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure (1989) Cell Tissue Res, 258, pp. 441-475
  • Friedrich, M., Wood, E.J., Wu, M., Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors (2011) J Exp Zool, 316, pp. 484-499
  • Hanström, B., (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere, pp. 1-624. , BerlSpringer
  • Harzsch, S., Hafner, G., Evolution of eye development in arthropods: phylogenetic aspects (2006) Arthropod Struct Dev, 35, pp. 319-340
  • Hepp, Y., (2012), Caracterización del receptor de glutamato tipo NMDA en el cangrejo Neohelice granulata y estudio de su rol en procesos de aprendizaje y memoria. PhD thesis, Universidad de Buenos Aires; Maisak, M.S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., Schilling, T., Borst, A., A directional tuning map of Drosophila elementary motion detectors (2013) Nature, 500, pp. 212-216
  • Medan, V., Oliva, D., Tomsic, D., Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus (2007) J Neurophysiol, 98, pp. 2414-2428
  • Meier, M., Serbe, E., Maisak, M.S., Haag, J., Dickson, B.J., Borst, A., Neural circuit components of the Drosophila OFF motion vision pathway (2014) Curr Biol, 24, pp. 385-392
  • Melzer, R.R., Diersch, R., Nicastro, D., Smola, U., Compound eye evolution: highly conserved retinula and cone cell patterns indicate a common origin of the insect and crustacean ommatidium (1997) Naturwissenschaften, 84, pp. 542-544
  • Melzer, R.R., Michalke, C., Smolka, U., Walking on insect paths? Early ommaditial development in the compound eye of the ancestral crustacean, Triops cancriformis (2000) Naturwissenschaften, 87, pp. 308-311
  • Meinertzhagen, I.A., Evolution of the cellular organization of the Arthropod compound eye and optic lobe (1991) Evolution of the eye and visual system, pp. 341-363. , Cronly-Dillon JR, Gregory RL, editors. . London: Macmillan
  • Morante, J., Desplan, C., The color-vision circuit in the medulla of Drosophila (2008) Curr Biol, 18, pp. 553-565
  • Oliva, D., Medan, V., Tomsic, D., Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae) (2007) J Exp Biol, 210, pp. 865-880
  • Osorio, D., Bacon, J.P., A good eye for arthropod evolution (1994) BioEssays News Rev Mol Cell Dev Biol, 16, pp. 419-424
  • Raghu, S.V., Borst, A., Candidate glutamatergic neurons in the visual system of Drosophila (2011) PloS One, 6, pp. e19472
  • Raghu, S.V., Claussen, J., Borst, A., Neurons with GABAergic phenotype in the visual system of Drosophila (2013) J Comp Neurol, 521, pp. 252-265
  • Ramón y Cajal, S., Sanchez, D., Contribución al conocimiento de los centras nerviosos de los insectos (1915) Trab Lab Invest Biol Univ Madr, 13, pp. 1-168
  • Ribi, W.A., The first optic ganglion of the bee. IV. Synaptic fine structure and connectivity patterns of receptor cell axons and first order interneurones (1981) Cell Tissue Res, 215, pp. 443-464
  • Ribi, W.A., Scheel, M., The second and third optic ganglia of the worker bee: Golgi studies of the neuronal elements in the medulla and lobula (1981) Cell Tissue Res, 221, pp. 17-43
  • Schubart, C.D., Cuesta, J.A., Diesel, R., Felder, D.L., Molecular phylogeny, taxonomy, and evolution of nonmarine lineages within the American grapsoid crabs (Crustacea: Brachyura) (2000) Mol Phylogenet Evol, 15, pp. 179-190
  • Sinakevitch, I., Douglass, J.K., Scholtz, G., Loesel, R., Strausfeld, N.J., Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa (2003) J Comp Neurol, 467, pp. 150-172
  • Strausfeld, N.J., Golgi studies on insect. II. The optic lobes of Diptera (1970) Philos Trans R Soc Lond B Biol Sci, 258, pp. 135-223
  • (1976) Atlas of an insect brain, , Strausfeld NJ, editor. . . BerlSpringer
  • Strausfeld, N.J., The evolution of crustacean and insect optic lobes and the origins of chiasmata (2005) Arthropod Struct Dev, 34, pp. 235-256
  • Strausfeld, N.J., Campos-Ortega, J.A., Some interrelationships between the first and second synaptic regions of the fly's (Musca domestica) visual system (1972) Information processing in the visual systems of Arthropods, pp. 24-30. , Wehner R, editor. . BerlSpring
  • Strausfeld, N.J., Meinertzhagen, I.A., The insect neuron: morphologies, structures and relationships to neuroarchitecture (1998) Microscopic anatomy of invertebrates, vol 11b, pp. 487-538. , Harrison FW, Locke M, editors. . New York: Wiley-Liss
  • Strausfeld, N.J., Nässel, D.R., Neuroarchitecture of brain regions that subserve the compound eyes of crustacea and insect (1980) Handbook of sensory physiology, vol VII/6B, pp. 1-132. , Autrum H, editor. . BerlSpringer Verlag
  • Sztarker, J., Tomsic, D., Binocular visual integration in the crustacean nervous system (2004) J Comp Physiol A, 190, pp. 951-962
  • Sztarker, J., Tomsic, D., Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations (2008) J Comp Physiol A, 194, pp. 587-596
  • Sztarker, J., Tomsic, D., Brain modularity in arthropods: individual neurons that support "what" but not "where" memories (2011) J Neurosci, 31, pp. 8175-8180
  • Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of optic lobes that support motion detection in a semiterrestrial crab (2005) J Comp Neurol, 493, pp. 396-411
  • Sztarker, J., Strausfeld, N., Andrew, D., Tomsic, D., Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus (2009) J Comp Neurol, 513, pp. 129-150
  • Takemura, S., Lu, Z., Meinertzhagen, I.A., Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla (2008) J Comp Neurol, 509, pp. 493-513
  • Takemura, S., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P.K., Katz, W.T., Chklovskii, D.B., A visual motion detection circuit suggested by Drosophila connectomics (2013) Nature, 500, pp. 175-181
  • Tomsic, D., Berón de Astrada, M., Sztarker, J., Identification of individual neurons reflecting short- and long-term visual memory in an arthropod (2003) J Neurosci, 23, pp. 8539-8546
  • Varija Raghu, S., Reiff, D.F., Borst, A., Neurons with cholinergic phenotype in the visual system of Drosophila (2011) J Comp Neurol, 519, pp. 162-176
  • Wang-Bennett, L.T., Glantz, R.M., The functional organization of the crayfish lamina ganglionaris. II. Large-field spiking and nonspiking cells (1987) J Comp Physiol A, 161, pp. 147-160
  • Zeil, J., Hemmi, J.M., The visual ecology of fiddler crabs (2006) J Comp Physiol A, 192, pp. 1-25

Citas:

---------- APA ----------
Sztarker, J. & Tomsic, D. (2014) . Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata. Journal of Comparative Neurology, 522(14), 3177-3193.
http://dx.doi.org/10.1002/cne.23589
---------- CHICAGO ----------
Sztarker, J., Tomsic, D. "Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata" . Journal of Comparative Neurology 522, no. 14 (2014) : 3177-3193.
http://dx.doi.org/10.1002/cne.23589
---------- MLA ----------
Sztarker, J., Tomsic, D. "Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata" . Journal of Comparative Neurology, vol. 522, no. 14, 2014, pp. 3177-3193.
http://dx.doi.org/10.1002/cne.23589
---------- VANCOUVER ----------
Sztarker, J., Tomsic, D. Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata. J. Comp. Neurol. 2014;522(14):3177-3193.
http://dx.doi.org/10.1002/cne.23589