Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Crustaceans are among the most extensively distributed arthropods, occupying many ecologies and manifesting a great variety of compound eye optics; but in comparison with insects, relatively little is known about the organization and neuronal morphologies of their underlying optic neuropils. Most studies, which have been limited to descriptions of the first neuropil-the lamina-suggest that different species have approximately comparable cell types, However, such studies have been limited with regard to the types of neurons they identify and most omit their topographic relationships. It is also uncertain whether similarities, such as they are, are independent of visual ecologies. The present account describes and compares the morphologies and dispositions of monopolar and other efferent neurons as well as the organization of tangential and smaller centrifugal neurons in two grapsoid crabs, one from the South Atlantic, the other from the North Pacific. Because these species occupy significantly disparate ecologies we ask whether this might be reflected in differences of cell arrangements within the most peripheral levels of the visual system. The present study identifies such differences with respect to the organization of centrifugal neurons to the lamina. We also identify in both species neurons in the lamina that have hitherto not been identified in crustaceans and we draw specific comparisons between the layered organization of the grapsoid lamina and layered laminas of insects. © 2009 Wiley-Liss, Inc.

Registro:

Documento: Artículo
Título:Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus
Autor:Sztarker, J.; Strausfeld, N.; Andrew, D.; Tomsic, D.
Filiación:Laboratorio de Neurobiologá de la Memoria, Depto. Fisiología Biología Molecular y Celular, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, AZ 85721, United States
Universidad de Buenos Aires, Ciudad Universitaria Pabellon 2, Buenos Aires 1428, Argentina
Palabras clave:Ecological constraints; Eumalacostraca; Evolution; Visual processing; animal cell; animal tissue; arthropod; article; cell structure; cell type; cellular distribution; controlled study; crab; Crustacea; ecology; efferent nerve; histochemistry; male; nerve cell; neuropil; nonhuman; optic lobe; priority journal; species difference; visual discrimination; visual system; Animals; Brachyura; Male; Nerve Net; Neurons; Neuropil; Species Specificity; Visual Pathways
Año:2009
Volumen:513
Número:2
Página de inicio:129
Página de fin:150
DOI: http://dx.doi.org/10.1002/cne.21942
Título revista:Journal of Comparative Neurology
Título revista abreviado:J. Comp. Neurol.
ISSN:00219967
CODEN:JCNEA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219967_v513_n2_p129_Sztarker

Referencias:

  • Bachmann, S., Martinez, M.M., Feeding tactics of the American oystercatcher (Haematopus palliatus) on Mar Chiquita Coastal lagoon, Argentina (1999) Ornitologia Neotropical, 10, pp. 81-84
  • Backwell, P.R., Christy, J.H., Telford, S.R., Jennions, M.D., Passmore, N.I., Dishonest signaling in a fiddler crab (2000) Proc R Soc Lord B Biol Sci, 267, pp. 719-724
  • Berón, M.P., Dieta de juveniles de gaviota cangrejera (Larus atlanticus) en estuarios de la provincia cle Buenos Aires (2003) Hornero, 18, pp. 113-117
  • Bodian, D., A new method for staining nerve fibers and nerve endings in mounted paraffin sections (1937) Anat Rec, 69, pp. 153-162
  • Buschbeck, E.K., Neurobiological constraints and fly systematics: How different types of neural characters can contribute to a higher level dipteran phylogeny (2000) Evolution, 54, pp. 888-898
  • Buschbeck, E.K., Strausfeld, N.J., Visual motion-detection circuits in flies: Small-field retinotopic elements responding to motion are evolutionarily conserved across taxa (1996) J Neurosci, 16, pp. 4563-4578
  • Cajal, S.R., Sanchez, D., Contribucion al conocimiento de los centros nerviosos de los insectos. Parte I. Retina y centros opticos. (1915) Trab Lab Invest Biol Univ Madrid, 13, pp. 1-168
  • Campos-Ortega, J.A., Strausfeld, N.J., Synaptic connections of intrinsic cells and basket arborisations in the external plexiform layer of the fly's eye (1973) Brain Res, 59, pp. 119-136
  • Cannicci, S., Barelli, C., Vannini, M., Homing in the swimming crab Thalamita crenata: A mechanism based on underwater landmark memory (2000) Anim Behav, 60, pp. 203-210
  • Diesel, R., Schubart, C.D., Schuh, M., A reconstruction of the invasion of land by Jamaican crabs (Grapsidae: Sesarminae) (2000) J Zool, 250, pp. 141-160
  • Dohle, W., Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name 'Tetraconata' for the monophyletic unit Crustacea + Hexapoda (2001) Ann Soc Entomol, 37, pp. 85-103
  • Elofsson, R., Hagberg, M., (1986) Evolutionary aspects of the construction of the first optic neuropil (lamina ganglionaris) in Crustacea. Zoo Morphol, 106, pp. 174-178
  • Elofsson, R., Nässel, D., Myhrberg, H., A catecholaminergic neuron connecting the first two optic neuropiles (lamina ganglionaris and medulla externa) of the crayfish Pacifastacus leniusculus (1977) Cell Tiss Res, 182, pp. 287-297
  • Fischbach, K.F., Dittrich, A.P.M., The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure (1989) Cell Tissue Res, 258, pp. 441-475
  • Glantz, R.M., McIsaac, A., Two-channel polarization analyzer in the sustaining fiber-dimming fiber ensemble of crayfish visual system (1998) J Neurophysiol, 80, pp. 2571-2583
  • Glantz, R.M., Miller, C.S., Nässel, D.R., Tachykinin-related peptide and GABA-mediated presynaptic inhibition of crayfish photoreceptors (2000) J Neurosci, 20, pp. 1780-1790
  • Glenner, H., Thomsen, P.F., Hebsgaard, M.B., Sorensen, M.V., Willerslev, E., The origin of insects (2006) Science, 314, pp. 1883-1884
  • Greiner, B., Ribi, W.A., Warrant, E.J., A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megaflops genalis (2005) Cell Tissue Res, 322, pp. 313-320
  • Hafner, G.S., The neural organization of the lamina ganglionaris in the crayfish: A Golgi and EM study (1973) J Comp Neurol, 152, pp. 255-280
  • Hafner, G.S., The ultrastructure of retinula cell endings in the compound eye of the crayfish (1974) J Neurocytol, 3, pp. 295-311
  • Hanström, B., (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere, pp. 1-624. , Berlin: Springer. p
  • Higgins, C.M., Douglass, J.K., Strausfeld, N.J., The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects (2004) Vis Neurosci, 21, pp. 567-586
  • Kleinlogel, S., Marshall, N.J., Photoreceptor projection and termination pattern in the lamina of gonodactyloid stomatopods (mantis shrimps) (2005) Cell Tissue Res, 321, pp. 273-284
  • Kleinlogel, S., Marshall, N.J., Horwood, J.M., Land, M.F., Neuroarchitecture of the color and polarization vision system of the stomatopod Haptosquilla (2003) J Comp Neurol, 467, pp. 326-342
  • Li, Y.S., Strausfeld, N.J., Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana (1997) J Comp Neurol, 387, pp. 631-650
  • Nalbach, H.-O., Discontinous turning reaction during escape in soldier crabs (1990) J Exp Biol, 148, pp. 483-487
  • Nalbach, H.-O., Nalbach, G., Distribution of optokinetic sensitivity over the eye of crabs: Its relation to habitat and possible role in flow-field analysis (1987) J Comp Physiol A, 160, pp. 127-135
  • Nardi, F., Spinsanti, G., Boore, J.L., Carapelli, A., Dallai, R., Frati, F., Hexapod origins: Monophyletic or paraphyletic? (2003) Science, 299, pp. 1887-1889
  • Nässel, D.R., The organization of the lamina ganglionaris of the prawn, Pandalus borealis (Kroyer) (1975) Cell Tissue Res, 163, pp. 445-464
  • Nässel, D.R., The retina and retinal projection on the lamina ganglionaris of the crayfish Pacifastacus leniusculus (Dana) (1976) J Comp Neurol, 167, pp. 341-360
  • Nässel, D.R., Types and arrangements of neurons in the crayfish optic lamina (1977) Cell Tissue Res, 179, pp. 45-75
  • Nässel, D.R., Waterman, T.H., Golgi EM evidence for visual information channeling in the crayfish lamina ganglionaris (1977) Brain Res, 130, pp. 556-563
  • Nässel, D.R., Elofsson, R., Odselius, R., Neuronal connectivity patterns in the compound eyes of Artemia salina and Daphnia magna (Crustacea: Branchiopoda) (1978) Cell Tissue Res, 190, pp. 435-437
  • Nunnemacher, R.F., The fine structure of optic tracts of Decapoda (1966) The functional organisation of the compound eye, pp. 363-376. , Bernhard CG, editor, Oxford: Pergamon Press. p
  • Osorio, D., Bacon, J.P., A good eye for arthropod evolution (1994) Bioassays, 16, pp. 419-424
  • Patel, N.H., Ball, E.E., Goodman, C.S., Changing role of even-skipped during the evolution of insect pattern formation (1992) Nature, 357, pp. 339-342
  • Regier, J.C., Shultz, J.W., Kambic, R.E., Pancrustacean phylogeny: Hexapods are terrestrial crustaceans and maxillopods are not monophyletic (2005) Proc Biol Sci, 272, pp. 395-401
  • Retzius G. 1906. Zur Kenntnis des centralen Nervensystems der Daphniden. Biol. Untersuch. Neue Folge. Stockholm: Samson and Whalin. 13:107-116; Ribi, W.A., The first optic ganglion of the bee. I. Correlation between visual cell types and their terminals in the lamina and medulla (1975) Cell Tissue Res, 65, pp. 103-111
  • Sinakevitch, I., Strausfeld, N.J., Chemical neuroanatomy of the fly's movement detection pathway (2004) J Comp Neurol, 468, pp. 6-23
  • Sinakevitch, I., Douglass, J.K., Scholtz, G., Loeser, R., Strausfeld, N.J., Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa (2003) J Comp Neurol, 467, pp. 150-172
  • Stowe, S., Ribi, W.A., Sandeman, D.C., The organization of the lamina ganglionaris of the crabs Scylla serrata and Leptograpsus variegatus (1977) Cell Tissue Res, 178, pp. 517-532
  • Strausfeld, N.J., Golgi studies on insects. Part II. The optic lobes of Diptera (1970) Philos Trans R Soc Lond, 258, pp. 135-223
  • Strausfeld, N.J., (1976) Atlas of an insect brain, , Heidelberg: Springer
  • Strausfeld, N.J., Crustacean-insect relationships: The use of brain characters to derive phylogeny amongst segmented invertebrates (1998) Brain Behav Evol, 52, pp. 186-206
  • Strausfeld, N.J., The evolution of crustacean and insect optic lobes and the origins of chiasmata (2005) Arthropod Struct Dev, 34, pp. 235-256
  • Strausfeld, N.J., Nässel, D.R., Neuroarchitecture of brain regions that subserve the compound eyes of crustaceans and insects (1980) Handbook of sensory physiology, VII 6B, pp. 1-132. , Autrum H editor, Berlin: Springer. p
  • Strausfeld, N.J., Douglass, J., Campbell, H., Higgins, C., Parallel processing in the optic lobes of flies (2006) Invertebrate vision, pp. 349-398. , Warrant E, Nilsson D-E, editors, Cambridge, UK: Cambridge University Press. p
  • Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of optic lobes that support motion detection in a semiterrestrial crab (2005) J Comp Neurol, 493, pp. 396-411
  • Tomsic, D., Massoni, V., Maldonado, H., Habituation to a danger stimulus in two semiterrestrial crabs. Ontogenic, ecological and opioid system correlates (1993) J Comp Physiol A, 173, pp. 621-633
  • Wang-Bennett, L.T., Pfeiffer, C., Arnold, J., Glantz, R.M., Acetylcholine in the crayfish optic lobe: Concentration profile and cellular localization (1989) J Neurosci, 9, pp. 1864-1871
  • Zeil, J., Hoffmann, M., Signals from 'crabworld': Cuticular reflections in a fiddler crab colony (2001) J Exp Biol, 204, pp. 2561-2569
  • Zeil, J., Nalbach, G., Nalbach, H.-O., Eyes, eyes stalks and the visual world of semiterrestrial crabs (1986) J Comp Physiol A, 159, pp. 801-811

Citas:

---------- APA ----------
Sztarker, J., Strausfeld, N., Andrew, D. & Tomsic, D. (2009) . Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus. Journal of Comparative Neurology, 513(2), 129-150.
http://dx.doi.org/10.1002/cne.21942
---------- CHICAGO ----------
Sztarker, J., Strausfeld, N., Andrew, D., Tomsic, D. "Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus" . Journal of Comparative Neurology 513, no. 2 (2009) : 129-150.
http://dx.doi.org/10.1002/cne.21942
---------- MLA ----------
Sztarker, J., Strausfeld, N., Andrew, D., Tomsic, D. "Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus" . Journal of Comparative Neurology, vol. 513, no. 2, 2009, pp. 129-150.
http://dx.doi.org/10.1002/cne.21942
---------- VANCOUVER ----------
Sztarker, J., Strausfeld, N., Andrew, D., Tomsic, D. Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus. J. Comp. Neurol. 2009;513(2):129-150.
http://dx.doi.org/10.1002/cne.21942