Artículo

Fenoy, G.E.; Giussi, J.M.; von Bilderling, C.; Maza, E.M.; Pietrasanta, L.I.; Knoll, W.; Marmisollé, W.A.; Azzaroni, O. "Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte" (2018) Journal of Colloid and Interface Science. 518:92-101
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present the covalent modification of a Pani-like conducting polymer (polyaminobenzylamine, PABA) by grafting of a polyelectrolyte brush (poly [2-(methacryloyloxy)-ethyl-trimethylammonium chloride], PMETAC). As PABA has extra pendant amino moieties, the grafting procedure does not affect the backbone nitrogen atoms that are implicated in the electronic structure of the conducting polymers. Moreover, perchlorate anions interact very strongly with the quaternary ammonium pendant groups of PMETAC through ion pairing. Therefore, the grafting does not only keep the electroactivity of PABA in aqueous solutions but it adds the ion-actuation properties of the PMETAC brush to the modified electrode as demonstrated by contact angle measurements and electrochemical methods. In this way, the conjugation of the electron transfer properties of the conducting polymer with the anion responsiveness of the integrated brush renders perchlorate actuation of the electrochemical response. These results constitute a rational integration of nanometer-sized polymer building blocks that yields synergism of functionalities and illustrate the potentialities of nanoarchitectonics for pushing the limits of soft material science into the nanoworld. © 2018 Elsevier Inc.

Registro:

Documento: Artículo
Título:Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte
Autor:Fenoy, G.E.; Giussi, J.M.; von Bilderling, C.; Maza, E.M.; Pietrasanta, L.I.; Knoll, W.; Marmisollé, W.A.; Azzaroni, O.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química – Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, 64 and 113, La Plata, 1900, Argentina
Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, 1 piso (1650), Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182, San Sebastián, Gipuzkoa 20009, Spain
Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Centro de Microscopías Avanzadas Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Austrian Institute of Technology, Donau-City-Strasse 1, Vienna, 1220, Austria
Palabras clave:Anion responsiveness; Conducting polymers; Nanoarchitectonics; Polyaniline; Polymer brushes; Chlorine compounds; Electronic structure; Grafting (chemical); Inorganic compounds; Ions; Nanoscience; Negative ions; Polyaniline; Polyelectrolytes; Redox reactions; Solutions; Covalent modifications; ELectrochemical methods; Electrochemical response; Hydrophobic collapse; Nanoarchitectonics; Polyelectrolyte brushes; Polymer brushes; Polymer building blocks; Conducting polymers; nanofilm; nitrogen; perchlorate; polyaminobenzylamine; polyelectrolyte; polymer; quaternary ammonium derivative; unclassified drug; aqueous solution; Article; contact angle; electrochemical analysis; hydrophobicity; modulation; priority journal
Año:2018
Volumen:518
Página de inicio:92
Página de fin:101
DOI: http://dx.doi.org/10.1016/j.jcis.2018.02.014
Título revista:Journal of Colloid and Interface Science
Título revista abreviado:J. Colloid Interface Sci.
ISSN:00219797
CODEN:JCISA
CAS:nitrogen, 7727-37-9; perchlorate, 14797-73-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219797_v518_n_p92_Fenoy

Referencias:

  • Aono, M., Ariga, K., The way to nanoarchitectonics and the way of nanoarchitectonics (2016) Adv. Mater., 28, pp. 989-992
  • Ariga, K., Ji, Q., Nakanishi, W., Hill, J.P., Aono, M., Nanoarchitectonics: a new materials horizon for nanotechnology (2015) Mater. Horiz., 2, pp. 406-413
  • Ariga, K., Yamauchi, Y., Aono, M., Commentary: nanoarchitectonics—think about NANO again (2015) APL Mater., 3, p. 61001
  • Zoppe, J.O., Ataman, N.C., Mocny, P., Wang, J., Moraes, J., Klok, H.A., Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes (2017) Chem. Rev., 117, pp. 1105-1318
  • Cortez, M.L., Díaz, G., Marmisollé, W.A., Giussi, J.M., Azzaroni, O., Nanoarchitectonic design of complex materials using polymer brushes as structural and functional units (2018) Polym. Biopolym. Brushes Fundam. Appl. Mater. Biotechnol., pp. 733-756. , O. Azzaroni I. Szleifer 1st ed. John Wiley & Sons, Ltd. Hoboken
  • Azzaroni, O., Brown, A.A., Huck, W.T.S., Tunable wettability by clicking counterions into polyelectrolyte brushes (2007) Adv. Mater., 19, pp. 151-154
  • Moya, S.E., Azzaroni, O., Kelby, T., Donath, E., Huck, W.T.S., Explanation for the apparent absence of collapse of polyelectrolyte brushes in the presence of bulky ions (2007) J. Phys. Chem. B, 111, pp. 7034-7040
  • Strover, L.T., Malmström, J., Stubbing, L.A., Brimble, M.A., Travas-Sejdic, J., Electrochemically-controlled grafting of hydrophilic brushes from conducting polymer substrates (2016) Electrochim. Acta, 188, pp. 57-70
  • Grande, C.D., Tria, M.C., Jiang, G., Ponnapati, R., Park, Y., Zuluaga, F., Grafting of polymers from electrodeposited macro-RAFT initiators on conducting surfaces (2011) React. Funct. Polym., 71, pp. 938-942
  • Chams, A., Dupeyre, G., Jouini, M., Yassar, A., Perruchot, C., Direct growth of polymer brushes from an electrodeposited conducting poly(dithienylpyrrole) layer functionalized with ATRP initiating moieties (2013) J. Electroanal. Chem., 708, pp. 20-30
  • Hackett, A.J., Malmström, J., Molino, P.J., Gautrot, J.E., Zhang, H., Higgins, M.J., Conductive surfaces with dynamic switching in response to temperature and salt (2015) J. Mater. Chem. B, 3, pp. 9285-9294
  • Grande, C.D., Tria, M.C., Jiang, G., Ponnapati, R., Advincula, R., Surface-grafted polymers from electropolymerized polythiophene RAFT agent (2011) Macromolecules, 44, pp. 966-975
  • Pernites, R.B., Foster, E.L., Felipe, M.J.L., Robinson, M., Advincula, R.C., Patterned surfaces combining polymer brushes and conducting polymer via colloidal template electropolymerization (2011) Adv. Mater., 23, pp. 1287-1292
  • Mulfort, K.L., Ryu, J., Zhou, Q., Preparation of surface initiated polystyrenesulfonate films and PEDOT doped by the films (2003) Polymerguil, 44, pp. 3185-3192
  • Zhao, H., Zhu, B., Luo, S.C., Lin, H.A., Nakao, A., Yamashita, Y., Controlled protein absorption and cell adhesion on polymer-brush-grafted poly(3,4-ethylenedioxythiophene) films (2013) ACS Appl. Mater. Interf., 5, pp. 4536-4543
  • Pei, Y., Travas-Sejdic, J., Williams, D.E., Reversible electrochemical switching of polymer brushes grafted onto conducting polymer films (2012) Langmuir, 28, pp. 8072-8083
  • Pei, Y., Travas-Sedjic, J., Williams, D.E., Electrochemical switching of conformation of random polyampholyte brushes grafted onto polypyrrole (2012) Langmuir, 28, pp. 13241-13248
  • Strover, L.T., Malmström, J., Laita, O., Reynisson, J., Aydemir, N., Nieuwoudt, M.K., A new precursor for conducting polymer-based brush interfaces with electroactivity in aqueous solution (2013) Polymer, 54, pp. 1305-1317
  • Massoumi, B., Shafagh-kalvanagh, M., Jaymand, M., Soluble and electrically conductive polyaniline-modified polymers: incorporation of biocompatible polymeric chains through ATRP technique (2017) J. Appl. Polym. Sci., 134, pp. 1-10
  • Liu, P., Su, Z., Surface-initiated atom transfer radical polymerization (SI-ATRP) of MMA from PANI powders (2005) Polym. Bull., 55, pp. 411-417
  • Ghorbani, M., Gheybi, H., Entezami, A.A., Synthesis of water-soluble and conducting polyaniline by growing of poly (N-isopropylacrylamide) brushes via atom transfer radical polymerization method (2012) J. Appl. Polym. Sci., 123, pp. 2299-2308
  • Massoumi, B., Abdollahi, M., Shabestari, S.J., Entezami, A.A., Preparation and characterization of polyaniline N-grafted with poly(ethyl acrylate) synthesized via atom transfer radical polymerization (2013) J. Appl. Polym. Sci., 128, pp. 47-53
  • Marmisollé, W.A., Maza, E., Moya, S., Azzaroni, O., Amine-appended polyaniline as a water dispersible electroactive polyelectrolyte and its integration into functional self-assembled multilayers (2016) Electrochim. Acta, 210, pp. 435-444
  • Marmisollé, W.A., Gregurec, D., Moya, S., Azzaroni, O., Polyanilines with pendant amino groups as electrochemically active copolymers at neutral pH (2015) ChemElectroChem, 2, pp. 2011-2019
  • Yue, J., Epstein, A., XPS study of self-doped conducting polyaniline and parent systems (1991) Macromolecules, 24, pp. 4441-4445
  • Rafti, M., Marmisollé, W.A., Azzaroni, O., Metal-organic frameworks help conducting polymers optimize the efficiency of the oxygen reduction reaction in neutral solutions (2016) Adv. Mater. Interf., 3, p. 1600047
  • Kumar, S.N., Gaillard, F., Bouyssoux, G., Sartre, A., High-resolution XPS studies of electrochemically synthesized conducting polyaniline films (1990) Synth. Met., 36, pp. 111-127
  • Baba, A., Mannen, T., Ohdaira, Y., Shinbo, K., Kato, K., Kaneko, F., Detection of adrenaline on poly(3-aminobenzylamine) ultrathin film by electrochemical-surface plasmon resonance spectroscopy (2010) Langmuir, 26, pp. 18476-18482
  • Ryu, K.S., Jung, J.H., Joo, J., Chang, S.H., Improved conducting states induced by an electrochemical charging process in polyaniline film doped with new dopants (2002) J. Electrochem. Soc., 149, p. A478
  • Lim, H.S., Lee, S.G., Lee, D.H., Lee, D.Y., Lee, S., Cho, K., Superhydrophobic to superhydrophilic wetting transition with programmable ion-pairing interaction (2008) Adv. Mater., 20, pp. 4438-4441
  • Zhao, B., Brittain, W.J., Zhou, W., Cheng, S.Z.D., AFM study of tethered polystyrene-b-poly(methyl methacrylate) and polystyrene-b-poly(methyl acrylate) brushes on flat silicate substrates (2000) Macromolecules, 33, pp. 8821-8827
  • Kou, R., Zhang, J., Wang, T., Liu, G., Interactions between polyelectrolyte brushes and hofmeister ions: chaotropes versus kosmotropes (2015) Langmuir
  • Tan, K.Y., Gautrot, J.E., Huck, W.T.S., Formation of pickering emulsions using ion-specific responsive colloids (2011) Langmuir, 27, pp. 1251-1259
  • Zimmermann, R., Gunkel-grabole, G., Bünsow, J., Werner, C., Huck, W.T.S., Duval, J.F.L., Evidence of ion-pairing in cationic brushes from evaluation of brush charging and structure by electrokinetic and surface conductivity (2017) Analysis
  • Azzaroni, O., Moya, S., Farhan, T., Brown, A.A., Huck, W.T.S., Switching the properties of polyelectrolyte brushes via “hydrophobic collapse” (2005) Macromolecules, 38, pp. 10192-10199
  • Azzaroni, O., Gervasi, C., Characterization of responsive polymer brushes at solid/liquid interfaces by electrochemical impedance spectroscopy (2011) Funct. Polym. Films, 2, pp. 809-830
  • Politakos, N., Azinas, S., Moya, S.E., Responsive copolymer brushes of poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) and poly(1H,1H,2H,2H-Perfluorodecyl acrylate) (PPFDA) to modulate surface wetting properties (2016) Macromol. Rapid Commun., 37, pp. 662-667
  • Marmisollé, W.A., Florit, M.I., Posadas, D., Acid-base equilibrium in conducting polymers. The case of reduced polyaniline (2014) J. Electroanal. Chem., 734, pp. 10-17
  • Zhou, F., Hu, H., Yu, B., Osborne, V.L., Huck, W.T.S., Liu, W., Probing the responsive behavior of polyelectrolyte brushes using electrochemical impedance spectroscopy employed to probe the responsive properties of polyelec- swollen and collapsed states. Swollen brushes allow good (2007) Anal. Chem., 79, pp. 176-182
  • Yu, B., Zhou, F., Bo, Y., Hou, X., Liu, W., Electrochemical impedance spectroscopy of poly (1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium chloride) brushes with locally generated Pd (2007) Electrochem. Commun., 9, pp. 1749-1754
  • Rodríguez Presa, M.J., Gassa, L.M., Azzaroni, O., Gervasi, C.A., Estimating diffusion coefficients of probe molecules into polyelectrolyte brushes by electrochemical impedance spectroscopy (2009) Anal. Chem., 81, pp. 7936-7943
  • Rubinson, J.F., Kayinamura, Y.P., Charge transport in conducting polymers: insights from impedance spectroscopy (2009) Chem. Soc. Rev., 38, p. 3339
  • Farina, R., Laugel, N., Pincus, P., Tirrell, M., Brushes of strong polyelectrolytes in mixed mono- and tri-valent ionic media at fixed total ionic strengths (2013) Soft Matter, 9, p. 10458
  • Rubinstein, I., Electrochemical impedance analysis of polyaniline films on electrodes (1987) J. Electrochem. Soc., 134, p. 3078
  • Nieto, F.J.R., Tucceri, R.I., The effect of pH on the charge transport at redox polymer-modified electrodes: an a.c. impedance study applied to poly(o-aminophenol) film electrodes (1996) J. Electroanal. Chem., 416, pp. 1-24
  • Presa, M.J.R., Bandey, H.L., Tucceri, R.I., Florit, M.I., Posadas, D., Hillman, A.R., Film thickness and electrolyte concentration effects on the EIS response of Poly-(o-toluidine) in the conducting state (1999) Electrochim. Acta, 44, pp. 2073-2085
  • Bobacka, J., Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers (1999) Anal. Chem., 71, pp. 4932-4937
  • Roßberg, K., Paasch, G., Dunsch, L., Ludwig, S., The influence of porosity and the nature of the charge storage capacitance on the impedance behaviour of electropolymerized polyaniline films (1998) J. Electroanal. Chem., 443, pp. 49-62
  • Yuan, X.-Z., Song, C., Wang, H., Zhang, J., Electrochemical Impedance Spectroscopy in PEM Fuel Cells (2010), Springer London London; Diamanti, E., Gregurec, D., Rodríguez-Presa, M.J., Gervasi, C.A., Azzaroni, O., Moya, S.E., High resistivity lipid bilayers assembled on polyelectrolyte multilayer cushions: an impedance study (2016) Langmuir, 32, pp. 6263-6271
  • Marmisollé, W.A., Florit, M.I., Posadas, D., Inés Florit, M., Electrochemically induced ageing of polyaniline. An electrochemical impedance spectroscopy study (2012) J. Electroanal. Chem., 673, pp. 65-71
  • Florit, M.I., The effect of temperature on the impedance of poly-o-toluidine in 3.7 M H 2 SO 4 (1999) J. Electrochem. Soc., 146, p. 2592
  • Inzelt, G., Conducting Polymers (2012), Springer Berlin Heidelberg Berlin, Heidelberg; Orazem, M.E., Shukla, P., Membrino, M.A., Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements (2002) Electrochim. Acta, 47, pp. 2027-2034

Citas:

---------- APA ----------
Fenoy, G.E., Giussi, J.M., von Bilderling, C., Maza, E.M., Pietrasanta, L.I., Knoll, W., Marmisollé, W.A.,..., Azzaroni, O. (2018) . Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte. Journal of Colloid and Interface Science, 518, 92-101.
http://dx.doi.org/10.1016/j.jcis.2018.02.014
---------- CHICAGO ----------
Fenoy, G.E., Giussi, J.M., von Bilderling, C., Maza, E.M., Pietrasanta, L.I., Knoll, W., et al. "Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte" . Journal of Colloid and Interface Science 518 (2018) : 92-101.
http://dx.doi.org/10.1016/j.jcis.2018.02.014
---------- MLA ----------
Fenoy, G.E., Giussi, J.M., von Bilderling, C., Maza, E.M., Pietrasanta, L.I., Knoll, W., et al. "Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte" . Journal of Colloid and Interface Science, vol. 518, 2018, pp. 92-101.
http://dx.doi.org/10.1016/j.jcis.2018.02.014
---------- VANCOUVER ----------
Fenoy, G.E., Giussi, J.M., von Bilderling, C., Maza, E.M., Pietrasanta, L.I., Knoll, W., et al. Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte. J. Colloid Interface Sci. 2018;518:92-101.
http://dx.doi.org/10.1016/j.jcis.2018.02.014