Platero, E.; Fernandez, M.E.; Bonelli, P.R.; Cukierman, A.L."Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance" (2017) Journal of Colloid and Interface Science. 491:1-12
El editor solo permite la decarga de la versión post-print. Si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Graphene oxide/alginate beads were prepared from lab-synthesized graphene oxide, varying its content within the beads (0.05, 0.125, and 0.25 wt.%). Ethanol-drying and lyophilization were compared as drying methods to obtain suitable adsorbents which were later tested to the removal of a model organic molecule (methylene blue). The morphological and textural properties of all the beads were characterized by scanning electron microscopy and N2 adsorption/desorption isotherms at −196 °C, respectively. Limited porosity was obtained for all cases (SBET < 60 m2/g). Uniaxial compression tests were performed to assess the mechanical properties of the beads. Ethanol-dried ones exhibited higher Young's elasticity modulus (E = 192 kPa) than the lyophilized samples (twice at 0.25 wt.% graphene oxide loading), which disclosed breakage points at lower deformation percentages. Adsorption experiments were conducted and dye adsorption isotherms were obtained for the beads with the best removal performance. The experimental data were better fitted by the Langmuir model. The highest maximum adsorption capacity (4.25 mmol/g) was obtained for the lyophilized beads with the highest graphene oxide content. Mechanical properties were found to be affected also by the dye adsorption. © 2016 Elsevier Inc.


Documento: Artículo
Título:Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance
Autor:Platero, E.; Fernandez, M.E.; Bonelli, P.R.; Cukierman, A.L.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Programa de Investigación y Desarrollo de Fuentes Alternativas de Materias Primas y Energía−PINMATE, Intendente Güiraldes 2620, Ciudad Universitaria, Buenos Aires, C1428BGA, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, C1425FQB, Argentina
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Farmacotecnia II, Junín 956, Buenos Aires, C1113AAD, Argentina
Palabras clave:Alginate beads; Basic dye removal; Graphene oxide; Mechanical properties; Adsorption; Adsorption isotherms; Aromatic compounds; Compression testing; Drying; Ethanol; Mechanical properties; Scanning electron microscopy; Adsorption capacities; Adsorption experiment; Adsorption/desorption; Alginate beads; Basic dyes; Graphene oxides; Removal performance; Uni-axial compression tests; Graphene; adsorbent; alcohol; alginic acid; graphene oxide; methylene blue; alginic acid; glucuronic acid; graphite; hexuronic acid; oxide; adsorption kinetics; Article; compression; covalent bond; desorption; freeze drying; hydrophobicity; hysteresis; mathematical model; oxidation; particle size; physical chemistry; priority journal; scanning electron microscopy; static electricity; surface area; thermal conductivity; thermostability; Young modulus; adsorption; chemistry; freeze drying; physical chemistry; surface property; Adsorption; Alginates; Chemistry, Physical; Ethanol; Freeze Drying; Glucuronic Acid; Graphite; Hexuronic Acids; Oxides; Particle Size; Surface Properties
Página de inicio:1
Página de fin:12
Título revista:Journal of Colloid and Interface Science
Título revista abreviado:J. Colloid Interface Sci.
CAS:alcohol, 64-17-5; alginic acid, 28961-37-7, 29894-36-8, 9005-32-7, 9005-38-3; methylene blue, 61-73-4; glucuronic acid, 36116-79-7, 576-37-4, 6556-12-3; graphite, 7782-42-5; oxide, 16833-27-5; Alginates; alginic acid; Ethanol; Glucuronic Acid; Graphite; Hexuronic Acids; Oxides


  • Li, C., Shi, G., Three-dimensional graphene architectures (2012) Nanoscale, 4, pp. 5549-5563
  • Chen, J., Li, Y., Huang, L., Li, C., Shi, G., High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process (2015) Carbon, 81, pp. 826-834
  • Guerrero-Contreras, J., Caballero-Briones, F., Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method (2015) Mater. Chem. Phys., 153, pp. 209-220
  • Chowdhury, S., Balasubramanian, R., Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater (2014) Adv. Colloid. Interfac., 204, pp. 35-56
  • Yan, H., Wu, H., Li, K., Wang, Y., Tao, X., Yang, H., Cheng, R., Influence of the surface structure of graphene oxide on the adsorption of aromatic organic compounds from water (2015) ACS Appl. Mater. Interf., 7, pp. 6690-6697
  • Yu, B., Xu, J., Liu, J.H., Yang, S.T., Luo, J., Zhou, Q., Wan, J., Liu, Y., Adsorption behavior of copper ions on graphene oxide–chitosan aerogel (2013) J. Environ. Chem. Eng., 1, pp. 1044-1050
  • Li, X., Tang, X., Fang, Y., Using graphene oxide as a superior adsorbent for the highly efficient immobilization of Cu(II) from aqueous solution (2014) J. Mol. Liq., 199, pp. 237-243
  • Cukierman, A.L., Platero, E., Fernandez, M.E., Bonelli, P.R., Potentialities of graphene-based nanomaterials for wastewater treatment (2016) Smart Materials for Waste Water Applications, pp. 47-86. , A.K. Mishra Wiley-Scrivener Publishing LLC MA, United States
  • Chiew, C.S.C., Poh, P.E., Pasbakhsh, P., Tey, B.T., Yeoh, H.K., Chan, E.S., Physicochemical characterization of halloysite/alginate bionanocomposite hydrogel (2014) Appl. Clay. Sci., 101, pp. 444-454
  • Zhang, K., Xu, Y., Hua, X., Han, H., Wang, J., Wang, J., Liu, Y., Liu, Z., An intensified degradation of phenanthrene with macroporous alginate–lignin beads immobilized Phanerochaete chrysosporium (2008) Biochem. Eng. J., 41, pp. 251-257
  • Hui, B., Zhang, Y., Ye, L., Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal (2014) Chem. Eng. J., 235, pp. 207-214
  • Ghadiri, M., Chrzanowski, W., Lee, W.H., Fathi, A., Dehghani, F., Rohanizadeh, R., Physico-chemical, mechanical and cytotoxicity characterizations of Laponite®/alginate nanocomposite (2013) Appl. Clay. Sci., 85, pp. 64-73
  • Ma, T., Chang, P.R., Zheng, P., Zhao, F., Ma, X., Fabrication of ultra-light graphene-based gels and their adsorption of methylene blue (2014) Chem. Eng. J., 240, pp. 595-600
  • Jiao, C., Xiong, J., Tao, J., Xu, S., Zhang, D., Lin, H., Chen, Y., Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study (2016) Int. J. Biol. Macromol., 83, pp. 133-141
  • Aravindhan, R., Fathima, N.N., Rao, J.R., Nair, B.U., Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads (2007) Colloid. Surface. A, 299, pp. 232-238
  • Peretz, S., Cintez, O., Removal of some nitrophenol contaminants using alginate gel beads (2008) Colloid. Surface. A, 319, pp. 165-172
  • Lu, T., Xiang, T., Huang, X.L., Li, C., Zhao, W.F., Zhang, Q., Zhao, C.S., Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals (2015) Carbohyd. Polym., 133, pp. 587-595
  • Algothmi, W.M., Bandaru, N.M., Yu, Y., Shapter, J.G., Ellis, A.V., Alginate-graphene oxide hybrid gel beads: an efficient copper adsorbent material (2013) J. Colloid. Interf. Sci., 397, pp. 32-38
  • Yang, H., Li, H., Zhai, J., Sun, L., Zhao, Y., Yu, H., Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil (2014) Chem. Eng. J., 246, pp. 10-19
  • Zhuang, Y., Yu, F., Chen, J., Ma, J., Batch and column adsorption of methylene blue by graphene/alginate nanocomposite: comparison of single-network and double-network hydrogels (2016) J. Environ. Chem. Eng., 4, pp. 147-156
  • Chiew, C.S.C., Yeoh, H.K., Pasbakhsh, P., Krishnaiah, K., Poh, P.E., Tey, B.T., Chan, E.S., Halloysite/alginate nanocomposite beads: kinetics, equilibrium and mechanism for lead adsorption (2016) Appl. Clay. Sci., 119, pp. 301-310
  • Bhujbal, S.V., Paredes-Juarez, G.A., Niclou, S.P., De Vos, P., Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells (2014) J. Mech. Behav. Biomed. Mater., 37, pp. 196-208
  • Wang, C.X., Cowen, C., Zhang, Z., Thomas, C.R., High-speed compression of single alginate microspheres (2005) Chem. Eng. Sci., 60, pp. 6649-6657
  • Ouwerx, C., Velings, N., Mestdagh, M.M., Axel, M.A.V., Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations (1998) Polym. Gels Netw., 6, pp. 393-408
  • Chan, E.S., Limb, T.K., Voo, W.P., Pogaku, R., Tey, B.T., Zhang, Z., Effect of formulation of alginate beads on their mechanical behavior and stiffness (2011) Particuology, 9, pp. 228-234
  • Zhang, H., Pang, X., Qi, Y., PH-Sensitive graphene oxide/sodium alginate/polyacrylamide nanocomposite semi-IPN hydrogel with improved mechanical strength (2015) RSC Adv., 5, pp. 89083-89091
  • Hummers, W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J. Am. Chem. Soc, 80, p. 1339
  • Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide (2007) Carbon, 45, pp. 1558-1565
  • Fernandez, M.E., Nunell, G.V., Bonelli, P.R., Cukierman, A.L., Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes (2014) Ind. Crop. Prod., 62, pp. 437-445
  • Panwar, V., Chattree, A., Pal, K., A new facile route for synthesizing of graphene oxide using mixture of sulfuric–nitric–phosphoric acids as intercalating agent (2015) Physica E, 73, pp. 235-241
  • Eigler, S., Dotzer, C., Hof, F., Bauer, W., Hirsch, A., Sulfur species in graphene oxide (2013) Chem. Eur. J., 19, pp. 9490-9496
  • Song, J., Wang, X., Chang, C.T., Preparation and characterization of graphene oxide (2014) J. Nanomater., 2014, pp. 1-6
  • Botas, C., Álvarez, P., Blanco, C., Santamaría, R., Granda, M., Ares, P., Rodríguez-Reinoso, F., Menéndez, R., The effect of the parent graphite on the structure of graphene oxide (2012) Carbon, 50, pp. 275-282
  • Dimiev, A., Kosynkin, D.V., Alemandy, L.B., Chaguine, P., Tour, J.M., Pristine graphite oxide (2012) J. Am. Chem. Soc., 134, pp. 2815-2822
  • Ribeiro, R.S., Silva, A.M.T., Pastrana-Martínez, L.M., Figueiredo, J.L., Faria, J.L., Gomes, H.T., Graphene-based materials for the catalytic wet peroxide oxidation of highly concentrated 4-nitrophenol solutions (2015) Catal. Today, 249, pp. 204-212
  • Petit, C., Seredych, M., Bandosz, T., Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption (2009) J. Mater. Chem., 19, pp. 9176-9185
  • Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Xia, L., Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes (2013) Chem. Eng. Res. Des., 91, pp. 361-368
  • Sangwichien, C., Aranovich, G.L., Donohue, M.D., Density functional theory predictions of adsorption isotherms with hysteresis loops (2002) Colloid. Surface. A, 206, pp. 313-320
  • Sing, K.S.W., Physisorption of gases by porous carbons (1995) Porosity in Carbons: Characterization and Applications, pp. 49-66. , J.W. Patrick Halsted Press, Wiley & Sons Inc. New York
  • Tarafdar, A., Biswas, S., Pramanik, N.K., Pramanik, P., Synthesis of mesoporous chromium phosphate through an unconventional sol–gel route (2006) Micropor. Mesopor. Mat., 89, pp. 204-208
  • Fu, C., Zhao, G., Zhang, H., Li, S., Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries (2013) Int. J. Electrochem. Sci., 8, pp. 6269-6280
  • Kurayama, F., Suzuki, S., Oyamada, T., Furusawa, T., Sato, M., Suzuki, N., Facile method for preparing organic/inorganic hybrid capsules using amino-functional silane coupling agent in aqueous media (2010) J. Colloid- Interf. Sci., 349, pp. 70-76
  • Chan, E.S., Wong, S.L., Lee, P.P., Lee, J.S., Ti, T.B., Zhang, Z., Poncelet, D., Yim, Z.H., Effects of starch filler on the physical properties of lyophilized calcium–alginate beads and the viability of encapsulated cells (2011) Carbohyd. Polym., 83, pp. 225-232
  • Ferreira, W.H., Andrade, C.T., Characterization of glycerol-plasticized starch and graphene oxide extruded hybrids (2015) Ind. Crop. Prod., 77, pp. 684-690
  • Ovchinnikov, O.V., Evtukhova, A.V., Kondratenko, T.S., Smirnov, M.S., Khokhlov, V.Y., Erina, O.V., Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules (2016) Vibr. Spectrosc., 86, pp. 181-189
  • Arza, C.R., Jannasch, P., Maurer, F.H.J., Network formation of graphene oxide in poly (3-hydroxybutyrate) nanocomposites (2014) Eur. Polym. J., 59, pp. 262-269
  • Raidongia, K., Tan, A.T.L., Huang, J., Graphene oxide: some new insights into an old material (2014) Carbon Nanotubes and Graphene, pp. 341-374. , K. Tanaka S. Iijima Elsevier Ltd. Amsterdam
  • Yadav, M., Rhee, K.Y., Park, S.J., Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films (2014) Carbohyd. Polym., 110, pp. 18-25
  • Kusuktham, B., Prasertgul, J., Srinun, P., Morphology and property of calcium silicate encapsulated with alginate beads (2014) Silicon, 6, pp. 191-197
  • Qiu, Y., Guo, F., Hurt, R., Külaots, I., Explosive thermal reduction of graphene oxide-based materials: mechanism and safety implications (2014) Carbon, 72, pp. 215-223
  • Mohammed, N., Grishkewich, N., Waeijen, H.A., Berry, R.M., Tam, K.C., Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns (2016) Carbohyd. Polym., 136, pp. 1194-1202
  • Pandele, A.M., Ioniţă, M., Iovu, H., Molecular modeling of mechanical properties of the chitosan based graphene composites (2014) U.P.B. Sci. Bull. Series B, 76 (1), pp. 107-112
  • Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., Lee, J.H., Recent advances in graphene based polymer composites (2010) Prog. Polym. Sci., 35, pp. 1350-1375
  • Mezohegyi, G., van der Zee, F.P., Font, J., Fortuny, A., Fabregat, A., Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon (2012) J. Environ. Manage., 102, pp. 148-164
  • Ahmed, M.J., Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: review (2016) J. Environ. Chem. Eng., 4, pp. 89-99


---------- APA ----------
Platero, E., Fernandez, M.E., Bonelli, P.R. & Cukierman, A.L. (2017) . Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance. Journal of Colloid and Interface Science, 491, 1-12.
---------- CHICAGO ----------
Platero, E., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L. "Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance" . Journal of Colloid and Interface Science 491 (2017) : 1-12.
---------- MLA ----------
Platero, E., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L. "Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance" . Journal of Colloid and Interface Science, vol. 491, 2017, pp. 1-12.
---------- VANCOUVER ----------
Platero, E., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L. Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance. J. Colloid Interface Sci. 2017;491:1-12.