Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Activated carbons from two species of pine cones (Pinus canariensis and Cupressus sempervirens) were prepared by phosphoric acid activation and tested for the removal of nitrate ions from aqueous solution. To investigate the feasibility of improving their nitrate adsorption capacity, two different post-treatments - a thermal treatment and a treatment with saturated urea solution - were also applied to the prepared activated carbons. Comparison of the treated and untreated activated carbons showed that both post-treatments improved the nitrate adsorption performance more than twice. The maximum adsorption capacity, as evaluated from determination of the adsorption isotherms for the P. canariensis based carbons, and their proper representation by the Langmuir model, demonstrated that the post-treatment with the urea solution led to activated carbons with increased nitrate removal effectiveness, even superior to other reported results. Enhancements in their adsorption capacity could be mainly ascribed to higher contents of nitrogen and basic functional groups, whereas porous structure of the activated carbons did not seem to play a key role in the nitrate uptake. © 2014 Elsevier Inc.

Registro:

Documento: Artículo
Título:Nitrate uptake improvement by modified activated carbons developed from two species of pine cones
Autor:Nunell, G.V.; Fernandez, M.E.; Bonelli, P.R.; Cukierman, A.L.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón de Industrias, Intendente Güiraldes 2620, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428BGA, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, C1033AAJ, Argentina
Cátedra de Farmacotecnia II, Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires, C1113AAD, Argentina
Palabras clave:Modified activated carbons; Nitrate adsorption; Thermal treatment; Urea treatment; Activated carbon; Adsorption isotherms; Heat treatment; Metabolism; Nitrates; Urea; Adsorption capacities; Modified activated carbons; Nitrate adsorptions; Nitrate removal; Phosphoric acid activation; Pinus canariensis; Porous structures; Urea treatment; Adsorption; activated carbon; nitrate; nitrogen; phosphoric acid; urea; carbon; nitric acid derivative; adsorption; aqueous solution; Article; chemical structure; controlled study; Cupressus; Cupressus sempervirens; heat treatment; isotherm; nitrate uptake; pine; Pinus canariensis; waste water management; metabolism; pine; Adsorption; Carbon; Nitrates; Pinus
Año:2015
Volumen:440
Página de inicio:102
Página de fin:108
DOI: http://dx.doi.org/10.1016/j.jcis.2014.10.058
Título revista:Journal of Colloid and Interface Science
Título revista abreviado:J. Colloid Interface Sci.
ISSN:00219797
CODEN:JCISA
CAS:activated carbon, 64365-11-3, 82228-96-4; nitrate, 14797-55-8; nitrogen, 7727-37-9; phosphoric acid, 7664-38-2; urea, 57-13-6; carbon, 7440-44-0; Carbon; Nitrates
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219797_v440_n_p102_Nunell

Referencias:

  • Anirudhan, T.S., Rauf, T.A., (2013) J. Ind. Eng. Chem., 19, pp. 1659-1667
  • Gu, B., Ge, Y., Chang, S.X., Luo, W., Chang, J., (2013) Global Environ. Change, 23, pp. 1112-1121
  • Ota, K., Amano, Y., Aikawa, M., Machida, M., (2013) Appl. Surf. Sci., 276, pp. 838-842
  • Zghibi, A., Tarhouni, J., Zouhri, L., (2013) J. Afr. Earth Sc., 87, pp. 1-12
  • García-Garizábal, I., Causapé, J., Abrahao, R., (2012) J. Hydrol., pp. 15-22
  • Kurunc, A., Ersahin, S., Uz, B.Y., Sonmez, N.K., Uz, I., Kaman, H., Bacalan, G.E., Emekli, Y., (2011) Agric. Water Manag., 98, pp. 1013-1019
  • Anayah, F.M., Almasri, M.N., (2009) Appl. Geogr., 29, pp. 588-601
  • Almasri, M.N., (2007) Environ. Impact Assess. Rev., 27, pp. 220-242
  • Loganathan, P., Vigneswaran, S., Kandasamy, J., (2013) J. Environ. Manage., 131, pp. 363-374
  • Ward, M.H., (2009) Rev. Environ. Health, 24, pp. 357-363
  • Knobeloch, L., Salna, B., Hogan, A., Postle, J., Anderson, H., (2000) Environ. Health Perspect., 108, pp. 675-678
  • Guidelines for Drinking-water Quality (2011), fourth ed. World Health Organization; National Primary Drinking Water Standards (2009), http://www.water.epa.gov/drink/contaminant/index.cfm#list; Bagherifam, S., Komarneni, S., Lakzian, A., Fotovat, A., Khorasani, R., Huang, W., Ma, J., Wang, Y., (2014) Appl. Clay Sci., 95, pp. 126-132
  • Kilpimaa, S., Runtti, H., Kangas, T., Lassi, U., Kuokkanen, T., (2014) Chem. Eng. Res. Des.
  • Mukherjee, R., De, S., (2014) J. Membr. Sci., 466, pp. 281-292
  • Bhatnagar, A., Hogland, W., Marques, M., Sillanpää, M., (2013) Chem. Eng. J., 219, pp. 499-511
  • Keränen, A., Leiviskä, T., Gao, B., Hormi, O., Tanskanen, J., (2013) Chem. Eng. Sci., 98, pp. 59-68
  • Olgun, A., Atar, N., Wang, S., (2013) Chem. Eng. J., 222, pp. 108-119
  • Bhatnagar, A., Sillanpää, M., (2011) Chem. Eng. J., 168, pp. 493-504
  • Mishra, P.C., Patel, R.K., (2009) J. Environ. Manage., 90, pp. 519-522
  • Mahmudov, R., Huang, C.P., (2011) Sep. Purif. Technol., 77, pp. 294-300
  • Cho, D., Chon, C., Kim, Y., Jeon, B., Schwartz, F.W., Leed, E., Songe, H., (2011) Chem. Eng. J., 175, pp. 298-305
  • Nowicki, P., Pietrzak, R., Wachowska, H., (2010) Catal. Today, 150, pp. 107-114
  • Nowicki, P., Wachowska, H., Pietrzak, R., (2010) J. Hazard. Mater., 181, pp. 1088-1094
  • Nowicki, P., Skrzypczak, M., Pietrzak, R., (2010) Chem. Eng. J., 162, pp. 723-729
  • Nowicki, P., Pietrzak, R., (2010) Bioresour. Technol., 101, pp. 5802-5807
  • Treviño-Cordero, H., Juárez-Aguilar, L.G., Mendoza-Castillo, D.I., Hernández-Montoya, V., Bonilla-Petriciolet, A., Montes-Morán, M.A., (2013) Ind. Crops Prod., 42, pp. 315-323
  • Pietrzak, R., Bandosz, T.J., (2007) Carbon, 45, pp. 2537-2546
  • Bhatnagar, A., Ji, M., Choi, Y., Jung, W., Lee, S., Kim, S., Lee, G., Kang, J., (2008) Sep. Sci. Technol., 43, pp. 886-907
  • Momčilović, M., Purenović, M., Bojić, A., Zarubica, A., Randelović, M., (2011) Desalination, 276, pp. 53-59
  • Nunell, G.V., Fernández, M.E., Bonelli, P.R., Cukierman, A.L., (2012) Biomass Bioenergy, 44, pp. 87-95
  • de Celis, J., Amadeo, N.E., Cukierman, A.L., (2009) J. Hazard. Mater., 161, pp. 217-223
  • Fernandez, M.E., Nunell, G.V., Bonelli, P.R., Cukierman, A.L., (2012) Bioresour. Technol., 106, pp. 55-62
  • Carrott, P.J.M., Nabais, J.M.V., RibeiroCarrott, M.M.L., Menéndez, J.A., (2001) Microporous Mesoporous Mater., 47, pp. 243-252
  • Ramos, M.E., Bonelli, P.R., Blacher, S., RibeiroCarrott, M.M.L., Carrott, P.J.M., Cukierman, A.L., (2011) Colloids Surf. A: Physicochem. Eng. Aspects, 378, pp. 87-93
  • Ofomaja, A.E., Naidoo, E.B., (2011) Chem. Eng. J., 175, pp. 260-270
  • Font, R., Conesa, J.A., Moltó, J., Muñoz, M., (2009) J. Anal. Appl. Pyrol., 85, pp. 276-286
  • Carrott, P.J.M.S., Carrott, M.M.L.R., (2007) Bioresour. Technol., 98, pp. 2301-2312
  • Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P.M., Alvim-Ferraz, M.C.M., Dias, J.M., (2011) J. Hazard. Mater., 187, pp. 1-23
  • Wibowo, N., Setyadhi, L., Wibowo, D., Setiawan, J., Ismadji, S., (2007) J. Hazard. Mater., 146, pp. 237-242
  • Yin, C.Y., Aroua, M.K., Ashr, W.M., Daud, W., (2007) Sep. Purif. Technol., 52, pp. 403-415
  • Chingombe, P., Saha, B., Wakeman, R.J., (2006) J. Colloid Interface Sci., 297, pp. 434-442
  • Faria, P.C.C., Órfao, J.J.M., Pereira, M.F.R., (2004) Water Res., 38, pp. 2043-2052
  • Kapteijn, F., Moulijn, J.A., Matzner, S., Boehm, H.-P., (1999) Carbon, 37, pp. 1143-1150
  • Pietrzak, R., Wachowska, H., Nowicki, P., (2006) Energy Fuels, 20, pp. 1275-1280
  • Adib, F., Bagreev, A., Bandosz, T.J., (2000) Langmuir, 16, pp. 1980-1986
  • Bagreev, A., Menendez, J.A., Dukhno, I., Tarasenko, Y., Bandosz, T.J., (2004) Carbon, 42, pp. 469-476
  • Singh, S.K., Townsend, T.G., Mazyck, D., Boyer, T.H., (2012) Water Res., 46, pp. 491-499
  • Lorenc-Grabowska, E., Gryglewicz, G., Diez, M.A., (2013) Fuel, 114, pp. 235-243
  • Demiral, H., Gündüzoğlu, G., (2010) Bioresour. Technol., 101, pp. 1675-1680
  • Della Rocca, C., Belgiorno, V., Meriç, S., (2007) Desalination, 204, pp. 46-62

Citas:

---------- APA ----------
Nunell, G.V., Fernandez, M.E., Bonelli, P.R. & Cukierman, A.L. (2015) . Nitrate uptake improvement by modified activated carbons developed from two species of pine cones. Journal of Colloid and Interface Science, 440, 102-108.
http://dx.doi.org/10.1016/j.jcis.2014.10.058
---------- CHICAGO ----------
Nunell, G.V., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L. "Nitrate uptake improvement by modified activated carbons developed from two species of pine cones" . Journal of Colloid and Interface Science 440 (2015) : 102-108.
http://dx.doi.org/10.1016/j.jcis.2014.10.058
---------- MLA ----------
Nunell, G.V., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L. "Nitrate uptake improvement by modified activated carbons developed from two species of pine cones" . Journal of Colloid and Interface Science, vol. 440, 2015, pp. 102-108.
http://dx.doi.org/10.1016/j.jcis.2014.10.058
---------- VANCOUVER ----------
Nunell, G.V., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L. Nitrate uptake improvement by modified activated carbons developed from two species of pine cones. J. Colloid Interface Sci. 2015;440:102-108.
http://dx.doi.org/10.1016/j.jcis.2014.10.058