Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Sorption of CrO42- and HAsO42- by hydrotalcite, in its chloride form, was studied as a function of anion concentration. In both cases, the shape of the isotherms is langmuirian. The maximum uptake of CrO42- equals the ion-exchange capacity of the solid, whereas sorption of HAsO42- saturates at a higher value. Chloride ions inhibit the uptake of both anions, the amount of sorbed CrO42- declining rapidly to zero. The uptake of HAsO42-, however, attains a constant value at high chloride concentrations. The excess of arsenate uptake follows, at constant pH, a langmuirian dependence with equilibrium concentration and decreases with increasing pH, depicting a marked change in slope at pHpQa3. CrO42- and HAsO42- have notable, albeit different, effects on the electrophoretic behavior of hydrotalcite; the positive particle charge is screened almost completely by CrO42-, whereas sorption of HAsO42- produces charge reversal. These results reflect the formation of inner-sphere arsenate surface complexes at the edges of hydrotalcite particles. The underlying rationale is discussed in terms of the crystal structure of hydrotalcite surfaces. © 2012 Elsevier Inc.

Registro:

Documento: Artículo
Título:Complexation at the edges of hydrotalcite: The cases of arsenate and chromate
Autor:Jobbágy, M.; Regazzoni, A.E.
Filiación:INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA-Buenos Aires, Argentina
Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA-San Martín, Argentina
Instituto de Tecnología Jorge A. Sabato, Universidad Nacional de General San Martín, Av. General Paz 1499, B1650KNA-San Martín, Argentina
Palabras clave:Adsorption; Arsenate; Chromate; Hydrotalcite; Layered double hydroxides; Surface complexation; Anion concentrations; Arsenate; Arsenate uptake; Charge reversal; Chloride concentrations; Chloride ions; Electrophoretic behavior; Equilibrium concentration; Hydrotalcite surfaces; Hydrotalcites; Ion exchange capacity; Layered double hydroxides; Particle charge; Surface complex; Surface complexation; Adsorption; Chromates; Dyes; Negative ions; Chlorine compounds; arsenic acid; chloride ion; chromic acid; hydrotalcite; article; complex formation; crystal structure; electrophoresis; ion exchange; isotherm; pH; priority journal; Adsorption; Aluminum Hydroxide; Arsenates; Chromates; Hydrogen-Ion Concentration; Magnesium Hydroxide; Surface Properties
Año:2013
Volumen:393
Número:1
Página de inicio:314
Página de fin:318
DOI: http://dx.doi.org/10.1016/j.jcis.2012.10.069
Título revista:Journal of Colloid and Interface Science
Título revista abreviado:J. Colloid Interface Sci.
ISSN:00219797
CODEN:JCISA
CAS:arsenic acid, 15584-04-0, 7778-39-4; chromic acid, 11104-59-9; hydrotalcite, 12304-65-3; Aluminum Hydroxide, 5QB0T2IUN0; Arsenates; Chromates; Magnesium Hydroxide, NBZ3QY004S; arsenic acid, N7CIZ75ZPN; hydrotalcite, 12304-65-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219797_v393_n1_p314_Jobbagy

Referencias:

  • Vaccari, A., (1999) Appl. Clay Sci., 14, pp. 161-198
  • Carlino, S., (1997) Solid State Ionics, 98, pp. 73-84
  • Rives, V., Ulibarri, M.A., (1999) Coord. Chem. Rev., 181, pp. 61-120
  • Ookubo, A., Ooi, K., Tani, F., Hayashi, H., (1994) Langmuir, 10, pp. 407-411
  • Parker, L.M., Milestone, N.B., Newman, R.H., (1995) Ind. Eng. Chem. Res., 34, pp. 1196-1202
  • Das, J., Das, D., Dash, G.P., Parida, K.M., (2002) J. Colloid Interface Sci., 251, pp. 26-32
  • Das, D., Das, J., Parida, K.M., (2003) J. Colloid Interface Sci., 261, pp. 213-220
  • Yang, L., Shahrivari, Z., Liu, P.K.T., Sahimi, M., Tsotsis, T.T., (2005) Ind. Eng. Chem. Res., 44, pp. 6804-6815
  • Prasanna, S.V., Rao, R.A.P., Kamath, P.V., (2006) J. Colloid Interface Sci., 304, pp. 292-299
  • Goh, K.-H., Lim, T.-T., Dong, Z., (2008) Water Res., 42, pp. 1343-1368
  • Yu, X.-Y., Luo, T., Jia, Y., Xu, R.-X., Gao, C., Zhang, Y.-X., Liu, J.-H., Huang, X.-J., (2012) Nanoscale, 4, pp. 3466-3474
  • Miyata, S., (1983) Clays Clay Miner., 31, pp. 305-311
  • Israëli, Y., Taviot-Guého, C., Besse, J.-P., Morel, J.-P., Morel-Desrosiers, N., (2000) Dalton, pp. 791-796
  • Morel-Desrosiers, N., Pisson, J., Israëli, Y., Taviot-Guého, C., Besse, J.-P., Morel, J.-P., (2003) J. Mater. Chem., 13, pp. 2582-2585
  • Wang, Y., Gao, H., (2006) J. Colloid Interface Sci., 301, pp. 19-26
  • Goh, K.-H., Lim, T.-T., Banas, A., Dong, Z., (2010) J. Hazard. Mater., 179, pp. 818-827
  • Dzombak, D.A., Morel, F.M.M., (1990) Surface Complexation Modeling, , John Wiley and Sons, New York
  • Stumm, W., (1992) Chemistry of the Solid-Water Interface, , Wiley-Interscience, New York
  • Blesa, M.A., Morando, P.J., Regazzoni, A.E., Chemical Dissolution of Metal Oxides (1994), CRC Press, Boca Raton, Fla., USA; Jobbágy, M., Regazzoni, A.E., (2005) J. Phys. Chem. B, 109, pp. 389-393
  • Jobbágy, M., Regazzoni, A.E., (2011) Appl. Clay Sci., 51, pp. 366-369
  • Bascialla, G., Regazzoni, A.E., (2008) Colloids Surf. A, 328, pp. 34-39
  • Fogg, A.M., Dunn, J.S., O'Hare, D., (1998) Chem. Mater., 10, pp. 356-360
  • Millange, F., Walton, R.I., Lei, L., O'Hare, D., (2000) Chem. Mater., 12, pp. 1990-1994
  • Iyi, N., Kurashima, K., Fujita, T., (2002) Chem. Mater., 14, pp. 583-589
  • Hiemstra, T., Van Riemsdijk, W.H., Bolt, G.H., (1989) J. Colloid Interface Sci., 133, pp. 91-104
  • Hiemstra, T., (1989) J. Colloid Interface Sci., 133, pp. 105-117
  • Hiemstra, T., Van Riemsdijk, W.H., (2006) J. Colloid Interface Sci., 301, pp. 1-18
  • Rodríguez, R., Blesa, M.A., Regazzoni, A.E., (1996) J. Colloid Interface Sci., 177, pp. 122-131
  • Rosenqvist, J., Casey, W.H., (2004) Geochim. Cosmochim. Acta, 68, pp. 3547-3555
  • Randall, S.R., Sherman, D.M., Ragnarsdottir, K.V., (2001) Geochim. Cosmochim. Acta, 65, pp. 1015-1023
  • Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L., (1997) Environ. Sci. Technol., 31, pp. 315-320
  • Anderson, M.A., Ferguson, J.F., Gavis, J., (1976) J. Colloid Interface Sci., 54, pp. 391-399
  • Arai, Y., Elzinga, E.J., Sparks, D.L., (2001) J. Colloid Interface Sci., 235, pp. 80-88
  • Goldberg, S., Johnston, C.T., (2001) J. Colloid Interface Sci., 234, pp. 204-216
  • Hingston, F.J., Atkinson, R.J., Posner, A.M., Quirk, J.P., (1967) Nature, 215, pp. 1459-1461
  • Han, S., Hou, W., Zhang, C., Sun, D., Huang, X., Wang, G., (1998) J. Chem. Faraday Trans., 94, pp. 915-918
  • Blesa, M.A., Maroto, A.J.G., Regazzoni, A.E., (1984) J. Colloid Interface Sci., 99, pp. 32-40
  • Avena, M.J., De Pauli, C.P., (1998) J. Colloid Interface Sci., 202, pp. 195-204
  • Bourg, I.C., Sposito, G., Bourg, A.C.M., (2007) J. Colloid Interface Sci., 312, pp. 297-310
  • Rojas-Delgado, R., Arandigoyen-Vidaurre, M., De Pauli, C.P., Ulibarri, M.A., Avena, M.J., (2004) J. Colloid Interface Sci., 280, pp. 431-441
  • Mercado, A., Farfán-Torres, E.M., Regazzoni, A.E., Blesa, M.A., (2003) Colloids Surf. A, 218, pp. 277-284

Citas:

---------- APA ----------
Jobbágy, M. & Regazzoni, A.E. (2013) . Complexation at the edges of hydrotalcite: The cases of arsenate and chromate. Journal of Colloid and Interface Science, 393(1), 314-318.
http://dx.doi.org/10.1016/j.jcis.2012.10.069
---------- CHICAGO ----------
Jobbágy, M., Regazzoni, A.E. "Complexation at the edges of hydrotalcite: The cases of arsenate and chromate" . Journal of Colloid and Interface Science 393, no. 1 (2013) : 314-318.
http://dx.doi.org/10.1016/j.jcis.2012.10.069
---------- MLA ----------
Jobbágy, M., Regazzoni, A.E. "Complexation at the edges of hydrotalcite: The cases of arsenate and chromate" . Journal of Colloid and Interface Science, vol. 393, no. 1, 2013, pp. 314-318.
http://dx.doi.org/10.1016/j.jcis.2012.10.069
---------- VANCOUVER ----------
Jobbágy, M., Regazzoni, A.E. Complexation at the edges of hydrotalcite: The cases of arsenate and chromate. J. Colloid Interface Sci. 2013;393(1):314-318.
http://dx.doi.org/10.1016/j.jcis.2012.10.069