Artículo de Acceso Abierto. Puede ser descargado en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Specific receptors for the different gp130 cytokines, as well as the cytokines themselves, are expressed in anterior pituitary cells, providing the basis for the regulation of hormone secretion and cell growth (Figure 2). During an inflammatory response, both IL-6 and LIF increase (15, 17). LPS stimulates intrapituitary IL-6 production in FS cells via specific Toll receptors using the p38 MAPK-NF-κB pathway (20). Anti-IL-6 antibodies block the ACTH response of rat anterior pituitary cell cultures to LPS, showing the involvement of locally produced IL-6 (U. Renner et al., unpublished observations). Thus, during acute or chronic inflammation or infection, systemic, hypothalamic, or hypophyseal gp 130 cytokines may act on anterior pituitary cells, integrating the neuroendocrine response. The action of gp130 cytokines through the STAT3 transcription factor represents a powerful mechanism for regulation of pituitary corticotroph function. In response to different stressful stimuli, CRH stimulates the corticotrophs through cAMP/protein kinase A-mediated and calcium-mediated pathways and AP-1, CREB, and Nurr transcription factors. Cytokines may act on corticotrophs through different mechanisms; whereas IL-1 acts through Nur77, gp130 employs STAT3 for transcriptional activation. Cooperation between STAT3 and other transcription factors, such as NF-κB, AP-1, or the glucocorticoid receptor, has been described in other tissues (6), but it remains to be established whether this occurs in the pituitary. Future research clarifying the molecular mechanisms of gp130 action on pituitary cells will provide new clues regarding their involvement in neuro-endocrine responses to immune stimulation and will be of great importance for understanding pituitary pathophysiology.


Documento: Artículo
Título:gp130 cytokine signaling in the pituitary gland: A paradigm for cytokine-neuro-endocrine pathways
Autor:Arzt, E.
Filiación:Laboratorio de Fisiología y Biología Molecular, Facultad de Ciencias Exacias y Naturales, Universidad de Buenos Aires and Argentine National Research Council (CONICET), Buenos Aires, Argentina
Max-Planck-Institute of Psychiatry, Munich, Germany
Laboratorio de Fisiología y Biología Molecular, Departamento de Biología, FCEN, 1428 Buenos Aires, Argentina
Palabras clave:calcium; corticotropin; cyclic AMP; cyclic AMP dependent protein kinase; cyclic AMP responsive element binding protein; cytokine; cytokine receptor; glucocorticoid receptor; glycoprotein gp 130; immunoglobulin enhancer binding protein; interleukin 1; interleukin 6; interleukin 6 antibody; leukemia inhibitory factor; mitogen activated protein kinase; STAT3 protein; synaptophysin; toll like receptor; transcription factor; transcription factor AP 1; adenohypophysis; cell growth; corticotropin release; cytokine production; hormone release; hypophysis; hypothalamus; inflammation; neuroendocrine system; neuroimmunology; priority journal; review; signal transduction; stress; transcription regulation; Adrenocorticotropic Hormone; Animals; Antigens, CD; Cytokine Receptor gp130; Humans; Membrane Glycoproteins; Pituitary Gland; Pro-Opiomelanocortin; Receptors, Cytokine; Signal Transduction; Stress
Página de inicio:1729
Página de fin:1733
Título revista:Journal of Clinical Investigation
Título revista abreviado:J. Clin. Invest.
CAS:Adrenocorticotropic Hormone, 9002-60-2; Antigens, CD; Cytokine Receptor gp130, 133483-10-0; IL6ST protein, human; Membrane Glycoproteins; Pro-Opiomelanocortin, 66796-54-1; Receptors, Cytokine


  • Hirano, T., Interleukin-6 (1994) The cytokine handbook, pp. 145-168. , A.W. Thomson, editor. Academic Press Limited. London, United Kingdom
  • Kishimoto, T., Taga, T., Akira, S., Cytokine signal transduction (1994) Cell, 76, pp. 253-262
  • Kishimoto, T., Akira, S., Narazaki, M., Taga, T., Interleukin-6 family of cytokines and gp130 (1995) Blood, 86, pp. 1243-1254
  • Ray, D., Melmed, S., Pituitary cytokine and growth factor expression and action (1997) Endocr. Rev., 18, pp. 206-228
  • Arzt, E., Pathophysiological role of the cytokine network in the anterior pituitary gland (1999) Front. Neuroendocrinol., 20, pp. 71-95
  • Heinrich, P.C., Behrmann, I., Muller-Newen, G., Schaper, F., Graeve, L., Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway (1998) Biochem. J., 334, pp. 297-314
  • Barton, V.A., Hall, M.A., Hudson, K.R., Heath, J.K., Interleukin-11 signals through the formation of a hexameric receptor complex (2000) J. Biol. Chem., 275, pp. 36197-36203
  • Auernhammer, C.J., Melmed, S., The central role of SOCS-3 in integrating the neuro-immunoendocrine interface (2001) J. Clin. Invest., 108, pp. 1735-1740
  • Schmitz, J., Weissenbach, M., Haan, S., Heinrich, P.C., Schaper, F., SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP-2 recruitment site of gp130 (2000) J. Biol. Chem., 275, pp. 12848-12856
  • Takeda, K., Targeted disruption of the mouse Stat3 gene leads to early embryonic lathality (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 3801-3804
  • Yoshida, K., Targeted disruption of gp 130, a common signal transducer for the interleukin-6 family, leads to myocardial and hematological disorders (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 407-411
  • Rodig, S.J., Disruption of the JaK1 gene demostrates obligatory and nonredundant roles of the JaKs in cytokine-induced biologic responses (1998) Cell, 93, pp. 373-383
  • Shimon, I., Yan, X., Ray, D.W., Melmed, S., Cytokine-dependent gp130 receptor subunit regulates human fetal pituitary adrenocoticotropin hormone and growth hormone secretion (1997) J. Clin. Invest., 100, pp. 357-363
  • Akita, S., Human and murine pituitary expression of leukemia inhibitory factor. Novel intrapituitary regulation of adrenocorticotropin hormone synthesis and secretion (1995) J. Clin. Invest., 95, pp. 1288-1298
  • Wang, Z., Ren, S.G., Melmed, S., Hypothalamic and pituitary leukemia inhibitory factor gene expression in vivo: A novel endotoxin-inducible neuro-endocrine interface (1996) Endocrinology, 137, pp. 2947-2953
  • Ohmichi, M., Binding sites for interleukin-6 in the anterior pituitary gland (1992) Neuroendocrinology, 55, pp. 199-203
  • Spangelo, B.L., MacLeod, R.M., Isakson, P.C., Production of interleukin-6 by anterior pituitary cells in vitro (1990) Endocrinology, 126, pp. 582-586
  • Vankelecom, H., Carmeliet, P., Van Damme, J., Billiau, A., Denef, C., Production of interleukin-6 by folliculo-stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system (1989) Neuroendocrinology, 49, pp. 102-106
  • Spangelo, B.L., Gorospe, W.C., Role of the cytokines in the neuroendocrine-immune system axis (1995) Front. Neuroendocrinol., 16, pp. 1-12
  • Lohrer, P., Lipopolysaccharide directly stimulates the intrapituitary interleukin-6 production by folliculostellate cells via specific receptors and the p38a mitogen-activated protein kinase/nuclear factor-κB pathway (2000) Endocrinology, 141, pp. 4457-4465
  • Páez Pereda, M., Interleukin-6 is inhibited by glucocorticoids and stimulates ACTH secretion and POMC expression in human corcicotroph pituitary adenomas (2000) Exp. Clin. Endocrinol. Diabetes, 108, pp. 202-207
  • Ferrara, N., Winer, J., Henzel, W.J., Pituitary follicular cells secrete an inhibitor of aortic endothelial cell growth: Identification as leukemia inhibitor factor (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 698-702
  • Auernhammer, C.J., Melmed, S., Interleukin-11 stimulates proopiomelanocortin gene expression and adrenocorticotropin secretion in corticotroph cells: Evidence for a redundant cytokine network in the hypothalamo-pituitary-adrenal axis (1999) Endocrinology, 140, pp. 1559-1566
  • Perez Castro, C., The gp130 cytokines interleukin-11 and ciliary neurotropic factor regulate through specific receptors the function and growth of lactosomatotropic and folliculostellate pituitary cell lines (2000) Endocrinology, 141, pp. 1746-1753
  • Perez Castro, C., Effects of the gp130 cytokines CNTF and IL-11 on pituitary cells: CNTF receptors on human pituitary adenomas and stimulation of PRL and GH secretion in normal rat anterior pituitary aggregate cultures (2001) J. Endocrinol., 169, pp. 539-547
  • Arzt, E., Interleukin involvement in anterior pituitary cell growth regulation: Effects of interleukin-2 (IL-2) and IL-6 (1993) Endocrinology, 132, pp. 459-467
  • Renner, U., Gloddek, J., Arzt, E., Inoue, K., Stalla, G.K., Interleukin-6 is an autocrine growth factor for TTT/GF mouse pituitary cells (1997) Exp. Clin. Endocrinol. Diabetes, 105, pp. 345-352
  • Sawada, T., Interleukin-6 stimulates cell proliferation of rat anterior pituitary clonal cell lines in vicro (1995) J. Endocrinol. Invest., 18, pp. 83-90
  • Koyama, C., Pituitary Folliculo-stellate-like cells stimulate somatotropic pituitary tumor growth in nude mice (1995) Endocr. Pathol., 6, pp. 67-75
  • Stefana, B., Ray, D.W., Melmed, S., Leukemia inhibitory factor (LIF) induces differentiation of pituitary corticotroph function: A neuroendocrine phenotypic switch (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 12502-12506
  • Páez Pereda, M., Interleukin-2 (IL-2) and IL-6 regulate c-fos protooncogene expression in human pituitary adenoma explants (1996) Mol. Cell. Endocrinol., 124, pp. 33-42
  • Jones, T.H., Justice, S.K., Effect of interleukin-6 on human pituitary tumor cell growth (1995) J. Endocrinol., 144, pp. P292. , Abstr
  • Hirano, T., Ishihara, K., Hibi, M., Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family ofcytokine receptors (2000) Oncogene, 19, pp. 2548-2556
  • Ray, D.W., Ren, S.G., Melmed, S., Leukemia inhibitory factor (LIF) stimulates proopiomelanocortin (POMC) expression in a corticotroph cell line. Role of STAT pathway (1996) J. Clin. Invest., 97, pp. 1852-1859
  • Akita, S., Malkin, J., Melmed, S., Disrupted murine leukemia inhibitory factor (LIF) gene attenuates adrenocorticotropic hormone (ACTH) secretion (1996) Endocrinology, 137, pp. 3140-3143
  • Chesnokova, V., Auerhamer, C.J., Melmed, S., Murine LIF gene disruption attenuates the hypothalamio-pituitary-adrenal axis stress response (1998) Endocrinology, 139, pp. 2209-2216
  • Bousquet, C., Susini, C., Melmed, S., Inhibitory roles for SHP-1 and SOCS-3 following pituitary proopiomelanocortin by leukemia inhibitory factor (1999) J. Clin. Invest., 104, pp. 1277-1285
  • Auernhammer, C.J., Chesnokova, V., Bousquet, C., Melmed, S., Pituitary corticotroph SOCS-3: Novel intracellular regulation of leukemia-inhibitory factor-mediated proopiomelanocortin gene expression and adrenocorticotropin secretion (1998) Mol. Endocrinol., 12, pp. 954-961
  • Bousquet, C., Melmed, S., Critical role for STAT3 in murine pituitary adrenocorticotropin hormone leukemia inhibitory factor signaling (1999) J. Biol. Chem., 274, pp. 10723-10730
  • Bousquet, C., Zatelli, M.C., Melmed, S., Direct regulation of pituitary proopiomelanocortin by STAT3 provides a novel mechanism for immuno-nueroendocrine interfacing (2000) J. Clin. Invest., 106, pp. 1417-1425
  • Bousquet, C., Chesnokova, V., Kariagina, A., Ferrad, A., Melmed, S., cAMP neuropeptide agonists induce pituitary suppressor of cytokine signaling-3: Novel negative feedback mechanism for corticotroph cytokine action (2001) Mol. Endocrinol., 15, pp. 1880-1890


---------- APA ----------
(2001) . gp130 cytokine signaling in the pituitary gland: A paradigm for cytokine-neuro-endocrine pathways. Journal of Clinical Investigation, 108(12), 1729-1733.
---------- CHICAGO ----------
Arzt, E. "gp130 cytokine signaling in the pituitary gland: A paradigm for cytokine-neuro-endocrine pathways" . Journal of Clinical Investigation 108, no. 12 (2001) : 1729-1733.
---------- MLA ----------
Arzt, E. "gp130 cytokine signaling in the pituitary gland: A paradigm for cytokine-neuro-endocrine pathways" . Journal of Clinical Investigation, vol. 108, no. 12, 2001, pp. 1729-1733.
---------- VANCOUVER ----------
Arzt, E. gp130 cytokine signaling in the pituitary gland: A paradigm for cytokine-neuro-endocrine pathways. J. Clin. Invest. 2001;108(12):1729-1733.