El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Molecularly imprinted polymer nanoparticles (MIPNPs) with the ability to recognize coenzyme Q10 (CoQ10) were synthesised in order to be employed as sorbent in a dispersive micro-solid phase extraction (DMSPE) for the determination of CoQ10 in a liver extract. CoQ10 is a redox-active, lipophilic substance integrated in the mitochondrial respiratory chain which acts as an electron carrier, shuttling electrons from complex I (NADH-ubiquinone oxidoreductase) and II (succinate-ubiquinone oxidoreductase) to complex III (ubiquinol-cytochrome c reductase), for the production of cellular energy. The MIPNPs were synthesised by precipitation polymerization using coenzyme Q0 as the dummy template, methacrylic acid as the functional monomer, an acetonitrile: water mixture as the porogen, ethylene glycol dimethacrylate as the crosslinker and potassium persulfate as initiator. The nanoparticles were characterized by microscopy, capillary electrophoresis, dynamic light scattering, N2 adsorption–desorption isotherms, and infrared spectroscopy. The MIPNPs demonstrated the presence of selective cavities complementary to the quinone nucleus of CoQ10, leading to a specific recognition of CoQ10 compared with related compounds. In the liver extract the relative CoQ10 peak area (CoQ10 area/total peak area) increased from 4.6% to 25.4% after the DMSPE procedure. The recovery percentage of CoQ10 from the liver matrix was between 70.5% and 83.7% quantified against CoQ10 standard processed under the same conditions. The DMSPE procedure allows the elution of almost all the CoQ10 retained (99.4%) in a small volume (200 μL), allowing the sample to be concentrated 2.5 times (LOD: 1.1 μg g−1 and LOQ: 3.7 μg g−1 of tissue). The resulted clean up of the sample, the improvement in peak shape and baseline and the reduction of interferences, evidence that the MIPNPs could potentially be applied as sorbent in a DMSPE with satisfactory results and with a minimum amount of sorbent (1 mg). © 2016 Elsevier B.V.


Documento: Artículo
Título:Synthesis and characterization of molecularly imprinted polymer nanoparticles for coenzyme Q10 dispersive micro solid phase extraction
Autor:Contin, M.; Bonelli, P.; Lucangioli, S.; Cukierman, A.; Tripodi, V.
Filiación:Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, C1113AAD, Argentina
PINMATE—Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428EGA, Argentina
Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
Palabras clave:Coenzyme Q10; Dispersive micro solid phase extraction; Molecularly imprinted polymer nanoparticles; Capillary electrophoresis; Coenzymes; Ethylene; Ethylene glycol; Infrared spectroscopy; Light scattering; Nanoparticles; Phase separation; Redox reactions; Sorption; Synthesis (chemical); Coenzyme Q10; Dispersive micro solid-phase extractions; Ethylene glycol dimethacrylate; Mitochondrial respiratory chain; Molecularly Imprinted Polymer; Precipitation polymerizations; Synthesis and characterizations; Ubiquinol-cytochrome c reductase; Extraction; acetonitrile; ethylene glycol dimethacrylate; liver extract; methacrylic acid; molecularly imprinted polymer; nanoparticle; peroxydisulfate potassium; ubidecarenone; water; cross linking reagent; methacrylic acid derivative; nanoparticle; polymethacrylic acid; polymethacrylic acid derivative; ubidecarenone; ubiquinone; adsorption; animal tissue; Article; capillary electrophoresis; controlled study; desorption; dispersive micro solid phase extraction; electron microscopy; gel mobility shift assay; infrared spectroscopy; limit of detection; limit of quantitation; nonhuman; particle size; photon correlation spectroscopy; polymerization; precipitation; priority journal; solid phase extraction; zeta potential; analogs and derivatives; animal; bovine; chemistry; isolation and purification; liver; molecular imprinting; procedures; solid phase extraction; synthesis; Adsorption; Animals; Cattle; Cross-Linking Reagents; Liver; Methacrylates; Molecular Imprinting; Nanoparticles; Polymerization; Polymethacrylic Acids; Solid Phase Extraction; Ubiquinone
Página de inicio:1
Página de fin:9
Título revista:Journal of Chromatography A
Título revista abreviado:J. Chromatogr. A
CAS:acetonitrile, 75-05-8; ethylene glycol dimethacrylate, 97-90-5; liver extract, 72980-85-9; methacrylic acid, 18358-13-9, 79-41-4; peroxydisulfate potassium, 106015-10-5, 7727-21-1; ubidecarenone, 303-98-0; water, 7732-18-5; polymethacrylic acid, 25087-26-7; ubiquinone, 1339-63-5; coenzyme Q10; Cross-Linking Reagents; ethylene dimethacrylate; Methacrylates; polymethacrylic acid; Polymethacrylic Acids; Ubiquinone


  • Barshop, B., Gangoiti, J., Analysis of coenzyme Q in human blood and tissues (2007) Mitochon, 7, pp. 89-93
  • Turumen, M., Olsson, J., Dallner, G., Metabolism and function of coenzyme Q (2004) Biochem. Biophys. Acta, 1660, pp. 171-199
  • Contin, M., Flor, S., Martinefski, M., The use of coenzyme Q0 as a template in the development of a molecularly imprinted polymer for the selective recognition of coenzyme Q10 (2014) Anal. Chim. Acta, 807, pp. 67-74
  • Gagliardi, M., Mazzolai, B., Molecularly imprinted polymeric micro- and nano-particles for the targeted delivery of active molecules (2015) Future Med. Chem, 7, pp. 123-138
  • Yoshimatsu, K., Reimhult, K., Krozer, A., Mosbach, K., Sode, K., Ye, L., Uniform molecularly imprinted microspheres and nanoparticlesprepared by precipitation polymerisation: the control of particle size suitable for different analytical applications (2007) Anal. Chim. Acta, 584, pp. 112-121
  • Seifi, M., Moghadam, M.H., Hadizadeh, F., Ali-Asgari, S., Aboli, J., Mohajeri, S.A., Preparation and study of tramadol imprinted micro-and nanoparticles by precipitation polymerisation: microwave irradiation and conventional heating method (2014) Int. J. Pharm., 471, pp. 37-44
  • Yang, M., Gu, W., Sun, L., Zhang, F., Ling, Y., Chu, X., Wang, D., Study on the molecularly imprinted polymers with methyl-testosterone as the template (2010) Talanta, 81, pp. 156-161
  • Zhang, Y., Liu, R., Hu, Y., Li, G., Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples (2009) Anal. Chem., 81, pp. 967-976
  • Perez, N., Whitcombe, M., Vulfson, E., Molecularly imprinted nanoparticles prepared by core-shell emulsion polymerization (2000) J. Appl. Polym. Sci., 77, pp. 1851-1859
  • Curcio, P., Zandanel, C., Wagner, A., Miokowski, C., Baati, R., Semi-covalent surface molecular imprinting of polymers by one-stage mini-emulsion polymerization: glucopyranoside as a model analyte (2009) Macromol. Biosci., 9, pp. 596-604
  • Perez-Moral, N., Mayes, A., Comparative study of imprinted polymer particles prepared by different polymerisation methods (2004) Anal. Chim. Acta, 504, pp. 15-21
  • Imada, I., Morimoto, H., Photochemical reaction of ubiquinone. Formation of ubichromenol (1964) Chem. Pharm. Bull., 12, pp. 1047-1051
  •, Chemical and Physical Properties, PubChem; Contin, M., Lucangioli, S., Martinefski, M., Flor, S., Tripodi, V., Miniaturized HPLC-UV method for analysis of coenzyme Q10 in human plasma (2011) J. Liq. Chromatogr. Relat.Techol., 34, pp. 2485-2494
  • Provencher, S., Inverse problems in polymer characterization: direct analysis of polydispersity with photon correlation spectroscopy (1979) Makromol. Chem., 180, pp. 201-209
  • Dong, H., Tong, A., Li, L., Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection (2003) Spectrochim. Acta A, 59, pp. 279-284
  • Rathore, A.S., Horvath, C., Separation parameters via virtual migration distances in high-performance liquid chromatography, capillary zone electrophoresis and electrokinetic chromatography (1996) J. Chromatogr. A, 743, pp. 231-246
  • Azodi-Deilamia, S., Abdoussa, M., Sevedib, S.R., Synthesis and characterization of molecularly imprinted polymer for controlled release of tramadol (2010) Central Chem. Eur. J. Chem., 8, pp. 687-695
  • Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., Sing, K.S.W., Adsorption by Powders and Porous Solids Principles, Methodology and Applications (2014), 2nd ed. Elsevier Ltd. Amsterdan; Pichon, V., Selective sample treatment using molecularly imprinted polymers (2007) J. Chromatogr. A, 1152, pp. 41-53
  • Martinefski, M., Samassa, P., Lucangioli, S., Tripodi, V., A novel non-invasive sampling method using buccal mucosa cells for determination of coenzyme Q10 (2015) Anal. Bioanal. Chem., 407, pp. 5529-5533


---------- APA ----------
Contin, M., Bonelli, P., Lucangioli, S., Cukierman, A. & Tripodi, V. (2016) . Synthesis and characterization of molecularly imprinted polymer nanoparticles for coenzyme Q10 dispersive micro solid phase extraction. Journal of Chromatography A, 1456, 1-9.
---------- CHICAGO ----------
Contin, M., Bonelli, P., Lucangioli, S., Cukierman, A., Tripodi, V. "Synthesis and characterization of molecularly imprinted polymer nanoparticles for coenzyme Q10 dispersive micro solid phase extraction" . Journal of Chromatography A 1456 (2016) : 1-9.
---------- MLA ----------
Contin, M., Bonelli, P., Lucangioli, S., Cukierman, A., Tripodi, V. "Synthesis and characterization of molecularly imprinted polymer nanoparticles for coenzyme Q10 dispersive micro solid phase extraction" . Journal of Chromatography A, vol. 1456, 2016, pp. 1-9.
---------- VANCOUVER ----------
Contin, M., Bonelli, P., Lucangioli, S., Cukierman, A., Tripodi, V. Synthesis and characterization of molecularly imprinted polymer nanoparticles for coenzyme Q10 dispersive micro solid phase extraction. J. Chromatogr. A. 2016;1456:1-9.