Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

By combining path-integrals molecular dynamics simulations with the accurate MB-pol potential energy surface, we investigate the role of alternative potential models on isotopic fractionation ratios between H and D atoms at dangling positions in water clusters at low temperatures. Our results show clear stabilizations of the lighter isotope at dangling sites, characterized by free energy differences ΔG that become comparable to or larger than kBT for temperatures below ∼75 K. The comparison between these results to those previously reported using the empirical q-TIP4P/F water model [P. E. Videla et al., J. Phys. Chem. Lett. 5, 2375 (2014)] reveals that the latter Hamiltonian overestimates the H stabilization by ∼25%. Moreover, predictions from the MB-pol model are in much better agreement with measured results reported for similar isotope equilibria at ice surfaces. The dissection of the quantum kinetic energies into orthogonal directions shows that the dominant differences between the two models are to be found in the anharmonic characteristics of the potential energy surfaces along OH bond directions involved in hydrogen bonds. © 2018 Author(s).

Registro:

Documento: Artículo
Título:Isotopic equilibria in aqueous clusters at low temperatures: Insights from the MB-pol many-body potential
Autor:Videla, P.E.; Rossky, P.J.; Laria, D.
Filiación:Departamento de Quimica Inorganica Analitica y Quimica-Fisica e INQUIMAe, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, 1428, Argentina
Department of Chemistry, Rice University, Houston, TX 77005-1892, United States
Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, Buenos Aires, 1429, Argentina
Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States
Palabras clave:Free energy; Hydrogen bonds; Kinetic energy; Molecular dynamics; Molecular physics; Potential energy; Potential energy surfaces; Quantum chemistry; Rate constants; Stabilization; Free-energy difference; Isotopic fractionations; Low temperatures; Many-body potentials; Measured results; Molecular dynamics simulations; Orthogonal directions; Potential Model; Isotopes
Año:2018
Volumen:148
Número:8
DOI: http://dx.doi.org/10.1063/1.5019377
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v148_n8_p_Videla

Referencias:

  • Kuharski, R.A., Rossky, P.J., (1984) Chem. Phys. Lett., 103, p. 357
  • Wallqvist, A., Berne, B.J., (1985) Chem. Phys. Lett., 117, p. 214
  • Berne, B.J., Thirumalai, D., (1986) Annu. Rev. Phys. Chem., 37, p. 401
  • Stern, H.A., Berne, B.J., (2001) J. Chem. Phys., 115, p. 7622
  • Chen, B., Ivanov, I., Klein, M.L., Parrinello, M., (2003) Phys. Rev. Lett., 91
  • Miller, T.F., III, Manolopoulos, D.E., (2005) J. Chem. Phys., 123
  • Morrone, J.A., Car, R., (2008) Phys. Rev. Lett., 101
  • Paesani, F., Voth, G.A., (2009) J. Phys. Chem. B, 113, p. 5702
  • Paesani, F., Xantheas, S.S., Voth, G.A., (2009) J. Phys. Chem. B, 113, p. 13118
  • Ceriotti, M., Cuny, J., Parrinello, M., Manolopoulos, D.E., (2013) Proc. Natl. Acad. Sci. U. S. A., 110, p. 15591
  • Horita, J., Wesolowski, D.J., (1994) Geochim. Cosmochim. Acta, 58, p. 3425
  • Markland, T.E., Berne, B.J., (2012) Proc. Natl. Acad. Sci. U. S. A., 109, p. 7988
  • Wang, L., Ceriotti, M., Markland, T.E., (2014) J. Chem. Phys., 141
  • Devlin, J.P., (2000) J. Chem. Phys., 112, p. 5527
  • Liu, J., Andino, R.S., Miller, C.M., Chen, X., Wilkins, D.M., Ceriotti, M., Manolopoulos, D.E., (2013) J. Phys. Chem. C, 117, p. 2944
  • Nagata, Y., Pool, R.E., Backus, E.H.G., Bonn, M., (2012) Phys. Rev. Lett., 109
  • Ayotte, P., Johnson, M.A., (1997) J. Chem. Phys., 106, p. 811
  • Verlet, J.R., Bragg, A.E., Kammrath, A., Cheshnovsky, O., Neumark, D.M., (2005) Science, 307, p. 93
  • Kammrath, A., Verlet, J.R., Griffin, G.B., Neumark, D.M., (2006) J. Chem. Phys., 125
  • Verlet, J.R., Bragg, A.E., Kammrath, A., Cheshnovsky, O., Neumark, D.M., (2005) Science, 310, p. 1769
  • Buck, U., Huisken, F., (2000) Chem. Rev., 100, p. 3863
  • Tuckerman, M.E., (2010) Statistical Mechanics: Theory and Molecular Simulation, , (Oxford University Press), Cha 10
  • Videla, P.E., Rossky, P.J., Laria, D., (2014) J. Phys. Chem. Lett., 5, p. 2375
  • Habershon, S., Markland, T.E., Manolopoulos, D.E., (2009) J. Chem. Phys., 131
  • Babin, V., Leforestier, C., Paesani, F., (2013) J. Chem. Theory Comput., 9, p. 5395
  • Babin, V., Medders, G.R., Paesani, F., (2014) J. Chem. Theory Comput., 10, p. 1599
  • Babin, V., Medders, G.R., Paesani, F., (2014) J. Chem. Theory Comput., 10, p. 2906
  • Medders, G.R., Paesani, F., (2015) J. Chem. Theory Comput., 11, p. 1145
  • Medders, G.R., Gotz, A.W., Morales, M.A., Bajaj, P., Paesani, F., (2015) J. Chem. Phys., 143
  • Wang, Y., Huang, X., Shepler, B.C., Braams, B.J., Bowman, J.M., (2011) J. Chem. Phys., 134, p. 94509
  • Videla, P.E., Rossky, P.J., Laria, D., (2013) J. Chem. Phys., 139
  • Asare, E., Musah, A.R., Curotto, E., Freeman, D.L., Doll, J.D., (2009) J. Chem. Phys., 131
  • Nigra, P., Carignano, M.A., Kais, S., (2001) J. Chem. Phys., 115, p. 2621
  • Oliveira, L.F.L., Cuny, J., Morinière, M., Dontot, L., Simon, A., Spiegelman, F., Rapacioli, M., (2015) Phys. Chem. Chem. Phys., 17, p. 17079
  • Vanicek, J., Miller, W.H., (2007) J. Chem. Phys., 127
  • Herman, M.F., Bruskin, J., Berne, B.J., (1982) J. Chem. Phys., 76, p. 5150
  • Ceriotti, M., Markland, D.E., (2013) J. Chem. Phys., 138, p. 14112
  • Temelso, B., Shields, G.G., (2011) J. Chem. Theory Comput., 7, p. 2804
  • Wang, Y., Babin, V., Bowman, J.M., Paesani, F., (2012) J. Am. Chem. Soc., 134, p. 11116
  • Rowland, B., Fisher, M., Devlin, J.P., (1991) J. Chem. Phys., 95, p. 1378
  • Rowland, B., Kadagathur, N.S., Devlin, J.P., Buch, V., Feldman, T., Wojcik, M.J., (1995) J. Chem. Phys., 102, p. 8328
  • Buck, U., Ettischer, I., Melzer, M., Buch, V., Sadlej, J., (1998) Phys. Rev. Lett., 80, p. 2578
  • Habershon, S., Manolopoulos, D.E., Markland, T.E., Miller, T.F., III, (2013) Annu. Rev. Phys. Chem., 64, p. 387

Citas:

---------- APA ----------
Videla, P.E., Rossky, P.J. & Laria, D. (2018) . Isotopic equilibria in aqueous clusters at low temperatures: Insights from the MB-pol many-body potential. Journal of Chemical Physics, 148(8).
http://dx.doi.org/10.1063/1.5019377
---------- CHICAGO ----------
Videla, P.E., Rossky, P.J., Laria, D. "Isotopic equilibria in aqueous clusters at low temperatures: Insights from the MB-pol many-body potential" . Journal of Chemical Physics 148, no. 8 (2018).
http://dx.doi.org/10.1063/1.5019377
---------- MLA ----------
Videla, P.E., Rossky, P.J., Laria, D. "Isotopic equilibria in aqueous clusters at low temperatures: Insights from the MB-pol many-body potential" . Journal of Chemical Physics, vol. 148, no. 8, 2018.
http://dx.doi.org/10.1063/1.5019377
---------- VANCOUVER ----------
Videla, P.E., Rossky, P.J., Laria, D. Isotopic equilibria in aqueous clusters at low temperatures: Insights from the MB-pol many-body potential. J Chem Phys. 2018;148(8).
http://dx.doi.org/10.1063/1.5019377