Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH+ (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH+ systems. Only for the sixth-row Rn atom a significant deviation of this relation is found. © 2014 AIP Publishing LLC.

Registro:

Documento: Artículo
Título:Theoretical study of the relativistic molecular rotational g-tensor
Autor:Aucar, I.A.; Gomez, S.S.; Giribet, C.G.; Ruiz De Azúa, M.C.
Filiación:Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE), Northeastern University of Argentina, Avenida Libertad 5400, Corrientes, W3404AAS, Argentina
Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, Buenos Aires, 1428, Argentina
Palabras clave:Density functional theory; Hamiltonians; Perturbation techniques; Relativity; Tensors; Molecular Hamiltonian; Molecular parameters; Molecular properties; Perturbation theory; Relativistic effects; Relativistic electron; Susceptibility tensors; Uniform magnetic fields; Atoms
Año:2014
Volumen:141
Número:19
DOI: http://dx.doi.org/10.1063/1.4901422
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v141_n19_p_Aucar

Referencias:

  • Aucar, G.A., Romero, R.H., Maldonado, A.F., (2010) Int. Rev. Phys. Chem., 29, pp. 1-64
  • Xiao, Y., Sun, Q., Liu, W., (2012) Theor. Chem. Acc., 131, p. 1080
  • Aucar, G.A., (2014) Phys. Chem. Chem. Phys., 16, p. 4420
  • Aucar, I.A., Gomez, S.S., Ruiz De Azúa, M.C., Giribet, C.G., (2012) J. Chem. Phys., 136, p. 204119
  • Aucar, I.A., Gomez, S.S., Melo, J.I., Giribet, C.G., Ruiz De Azúa, M.C., (2013) J. Chem. Phys., 138, p. 134107
  • Xiao, Y., Liu, W., (2013) J. Chem. Phys., 138, p. 134104
  • Xiao, Y., Liu, W., (2013) J. Chem. Phys., 139, p. 034113
  • Aucar, I.A., Gomez, S.S., Giribet, C.G., Ruiz De Azúa, M.C., (2013) J. Chem. Phys., 139, p. 094112
  • Malkin, E., Komorovsky, S., Repisky, M., Demissie, T.B., Ruud, K., (2013) J. Phys. Chem. Lett., 4, pp. 459-463
  • Jaszunski, M., Repisky, M., Demissie, T.B., Komorovsky, S., Malkin, E., Ruud, K., Garbacz, P., Makulski, W., (2013) J. Chem. Phys., 139, p. 234302
  • Ruud, K., Demissie, T.B., Jaszunski, J., (2014) J. Chem. Phys., 140, p. 194308
  • Visscher, L., Enevoldsen, T., Saue, T., Jensen H.J.Aa., Oddershede, J., (1999) J. Comput. Chem., 20, p. 1262
  • Xiao, Y., Zhang, Y., Liu, W., (2014) J. Chem. Theory Comput., 10, pp. 600-608
  • Enevoldsen, T., Rasmussen, T., Sauer, S.P.A., (2001) J. Chem. Phys., 114, p. 84
  • Flygare, W.H., (1974) Chem. Rev., 74, pp. 653-687
  • Iliaš, M., Jensen H.J.Aa., Bast, R., Saue, T., (2013) Mol. Phys., 111, p. 1373
  • Melo, J.I., Ruiz De Azúa, M.C., Giribet, C.G., Aucar, G.A., Romero, R.H., (2003) J. Chem. Phys., 118, p. 471
  • Visscher, L., Jensen H.J.Aa., Bast, R., Saue, T., Bakken, V., Dyall, K.G., Dubillard, S., Yamamoto, S., http://www.diracprogram.org; Vaara, J., Pyykkö, P., (2003) J. Chem. Phys., 118, p. 2973
  • Vosko, S.J., Wilk, L., Nusair, M., (1980) Can. J. Phys., 58, p. 1200
  • Adamo, C., Barone, V., (1999) J. Chem. Phys., 110, p. 6158
  • Saue, T., Helgaker, T., (2002) J. Comput. Chem., 23, p. 814
  • Fossgaard, O., Gropen, O., Corral Valero, M., Saue, T., (2003) J. Chem. Phys., 118, pp. 10418-10430
  • Born, M., Oppenheimer, R.J., (1927) Ann. Phys., 389, p. 457
  • Van Vleck, J.H., (1951) Rev. Mod. Phys., 23, p. 213
  • Datta, S., Misra, A., (2001) J. Chem. Phys., 114, p. 1478
  • Datta, S., Misra, A., (2006) J. Chem. Phys., 125, p. 084111
  • Adkins, G.S., Sapirstein, J., (2004) Phys. Rev. Lett., 92, p. 213001
  • Aucar, G.A., Saue, T., Visscher, L., Jensen H.J.Aa., (1999) J. Chem. Phys., 110, p. 6208
  • Moss, R.E., (1973) Advanced Molecular Quantum Mechanics, , (Chapman and Hall, London)
  • Melo, J.I., Ruiz De Azúa, M.C., Giribet, C.G., Aucar, G.A., Provasi, P.F., (2004) J. Chem. Phys., 121, p. 6798
  • Roura, P.G., Melo, J.I., Ruiz De Azúa, M.C., Giribet, C.G., (2006) J. Chem. Phys., 125, p. 064107
  • Manninen, P., Lantto, P., Vaara, J., Ruud, K., (2003) J. Chem. Phys., 119, p. 2623
  • Manninen, P., Ruud, K., Lantto, P., Vaara, J., (2005) J. Chem. Phys., 122, p. 114107
  • (2013), http://daltonprogram.org, DALTON, a molecular electronic structure program, Release Dalton2013; Gauss, J., Ruud, K., Helgaker, T., (1996) J. Chem. Phys., 105, p. 2804
  • Dunning, T.H., Jr., (1989) J. Chem. Phys., 90, p. 1007
  • Woon, D.E., Dunning, T.H., Jr., (1993) J. Chem. Phys., 98, p. 1358
  • Dunning, T.H., Jr., (1995) J. Chem. Phys., 103, p. 4572
  • Kendall, R.A., Dunning, T.H., Jr., Harrison, R.J., (1992) J. Chem. Phys., 96, p. 6796
  • Peterson, K.A., Dunning, T.H., Jr., (2002) J. Chem. Phys., 117, p. 10548
  • Dyall, K.G., (2006) Theor. Chem. Acc., 115, p. 441
  • (1984) Handbook of Chemistry, , 3rd ed., edited by The Chemical Society of Japan Kagaku Benran (Maruzen Company, Tokyo), Vol.
  • Huber, K.P., Herzberg, G., (1979) Constants of Diatomic Molecules, , (Nostrand Reinhold, New York)
  • Ram, R.S., Bernath, P.F., Brault, J.W., (1985) J. Mol. Spectrosc., 113, p. 451
  • Warner, H.E., Conner, W.T., Woods, R.C., (1984) J. Chem. Phys., 81, p. 5413
  • Peterson, K.A., Petrmichl, R.H., McClain, R.L., Woods, R.C., (1991) J. Chem. Phys., 95, p. 2352
  • Bass, S.M., Deleon, R.L., Muenter, J.S., (1987) J. Chem. Phys., 86, p. 4305
  • De Leeuw, F.H., Dymanus, A., (1973) J. Mol. Spectrosc., 48, p. 427
  • Dabbousi, O.B., Meerts, W.L., De Leeuw, F.H., Dymanus, A., (1973) Chem. Phys., 2, p. 473
  • Laughlin, K.B., Blake, G.A., Cohen, R.C., Saykally, R.J., (1989) J. Chem. Phys., 90, p. 1358
  • Linnartz, H., Havenith, M., Zwart, E., Meerts, W.L., Ter Meulen, J.J., (1992) J. Mol. Spectrosc., 153, p. 710

Citas:

---------- APA ----------
Aucar, I.A., Gomez, S.S., Giribet, C.G. & Ruiz De Azúa, M.C. (2014) . Theoretical study of the relativistic molecular rotational g-tensor. Journal of Chemical Physics, 141(19).
http://dx.doi.org/10.1063/1.4901422
---------- CHICAGO ----------
Aucar, I.A., Gomez, S.S., Giribet, C.G., Ruiz De Azúa, M.C. "Theoretical study of the relativistic molecular rotational g-tensor" . Journal of Chemical Physics 141, no. 19 (2014).
http://dx.doi.org/10.1063/1.4901422
---------- MLA ----------
Aucar, I.A., Gomez, S.S., Giribet, C.G., Ruiz De Azúa, M.C. "Theoretical study of the relativistic molecular rotational g-tensor" . Journal of Chemical Physics, vol. 141, no. 19, 2014.
http://dx.doi.org/10.1063/1.4901422
---------- VANCOUVER ----------
Aucar, I.A., Gomez, S.S., Giribet, C.G., Ruiz De Azúa, M.C. Theoretical study of the relativistic molecular rotational g-tensor. J Chem Phys. 2014;141(19).
http://dx.doi.org/10.1063/1.4901422