Artículo

El editor permite la descarga del artículo en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We use ring-polymer-molecular-dynamics (RPMD) techniques and the semi-empirical q-TIP4P/F water model to investigate the relationship between hydrogen bond connectivity and the characteristics of nuclear position fluctuations, including explicit incorporation of quantum effects, for the energetically low lying isomers of the prototype cluster [H2O] 8 at T = 50 K and at 150 K. Our results reveal that tunneling and zero-point energy effects lead to sensible increments in the magnitudes of the fluctuations of intra and intermolecular distances. The degree of proton spatial delocalization is found to map logically with the hydrogen-bond connectivity pattern of the cluster. Dangling hydrogen bonds exhibit the largest extent of spatial delocalization and participate in shorter intramolecular O-H bonds. Combined effects from quantum and polarization fluctuations on the resulting individual dipole moments are also examined. From the dynamical side, we analyze the characteristics of the infrared absorption spectrum. The incorporation of nuclear quantum fluctuations promotes red shifts and sensible broadening relative to the classical profile, bringing the simulation results in much more satisfactory agreement with direct experimental information in the mid and high frequency range of the stretching band. While RPMD predictions overestimate the peak position of the low frequency shoulder, the overall agreement with that reported using an accurate, parameterized, many-body potential is reasonable, and far superior to that one obtains by implementing a partially adiabatic centroid molecular dynamics approach. Quantum effects on the collective dynamics, as reported by instantaneous normal modes, are also discussed. © 2013 AIP Publishing LLC.

Registro:

Documento: Artículo
Título:Nuclear quantum effects on the structure and the dynamics of [H 2O]8 at low temperatures
Autor:Videla, P.E.; Rossky, P.J.; Laria, D.
Filiación:Departamento de Quimica Inorganica Analitica y Quimica-Fisica e INQUIMAe, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Department of Chemistry, University of Texas at Austin, Austin, TX 78712-0165, United States
Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires, Argentina
Palabras clave:Collective dynamics; Connectivity pattern; Instantaneous normal modes; Intermolecular distance; Many-body potentials; Nuclear quantum effects; Polarization fluctuations; Spatial delocalization; Absorption spectroscopy; Dangling bonds; Hydrogen bonds; Isomers; Light absorption; Molecular dynamics; Quantum electronics
Año:2013
Volumen:139
Número:17
DOI: http://dx.doi.org/10.1063/1.4827935
Handle:http://hdl.handle.net/20.500.12110/paper_00219606_v139_n17_p_Videla
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00219606_v139_n17_p_Videla.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v139_n17_p_Videla

Referencias:

  • Kuharski, R.A., Rossky, P.J., (1985) J. Chem. Phys., 82, p. 5164. , 10.1063/1.448641
  • Lobaugh, J., Voth, G.A., (1997) J. Chem. Phys., 106, p. 2400. , 10.1063/1.473151
  • Schenter, G.K., (1998) J. Chem. Phys., 108, p. 6222. , 10.1063/1.476029
  • De La Peña, L.H., Kusalik, P.G., (2004) J. Chem. Phys., 121, p. 5992. , 10.1063/1.1783871
  • De La Peña, L.H., Kusalik, P.G., (2005) J. Am. Chem. Soc., 127, p. 5246. , 10.1021/ja0424676
  • De La Peña, L.H., Razul, M.S.G., Kusalik, P.G., (2005) J. Phys. Chem. A, 109, p. 7236. , 10.1021/jp051616j
  • Gai, H., Schenter, G.K., Garrett, B.C., (1996) J. Chem. Phys., 104, p. 680. , 10.1063/1.470864
  • Stern, H.A., Berne, B.J., (2001) J. Chem. Phys., 115, p. 7622. , 10.1063/1.1407287
  • Shiga, M., Shinoda, W., (2005) J. Chem. Phys., 123, p. 134502. , 10.1063/1.2035078
  • Wick, C.D., Schenter, G.K., (2006) J. Chem. Phys., 124, p. 114505. , 10.1063/1.2178322
  • Ramírez, R., Herrero, C.P., (2010) J. Chem. Phys., 133, p. 144511. , 10.1063/1.3503764
  • Fanourgakis, G.S., Schenter, G.K., Xantheas, S.S., (2006) J. Chem. Phys., 125, p. 141102. , 10.1063/1.2358137
  • Paesani, F., Iuchi, S., Voth, G.A., (2007) J. Chem. Phys., 127, p. 074506. , 10.1063/1.2759484
  • Miller III, T.F., Manolopoulos, D.E., (2005) J. Chem. Phys., 123, p. 154504. , 10.1063/1.2074967
  • Liu, K., Cruzan, J.D., Saykally, R.J., (1996) Science, 271, p. 929. , 10.1126/science.271.5251.929
  • Keutsch, F.N., Saykally, R.J., (2001) Proc. Natl. Acad. Sci. U.S.A., 98, p. 10533. , 10.1073/pnas.191266498
  • Gruenloh, C.J., Carney, C.A., Arrington, J.R., Zwier, T.S., Fredericks, S.Y., Jordan, K.D., (1997) Science, 276, p. 1678. , 10.1126/science.276.5319.1678
  • Pérez, C., (2012) Science, 336, p. 897. , 10.1126/science.1220574
  • Buck, U., Huisken, F., (2000) Chem. Rev., 100, p. 3863. , 10.1021/cr990054v
  • Jordan, K.D., Wang, F., (2003) Annu. Rev. Phys. Chem., 54, p. 367. , 10.1146/annurev.physchem.54.011002.103851
  • Robertson, W.H., Johnson, M.A., (2003) Annu. Rev. Phys. Chem., 54, p. 173. , 10.1146/annurev.physchem.54.011002.103801
  • Shin, J.W., (2004) Science, 304, p. 1137. , 10.1126/science.1096466
  • Guasco, T.L., Elliott, B.M., Johnson, M.A., Ding, J., Jordan, K.D., (2010) J. Phys. Chem. Lett., 1, p. 2396. , 10.1021/jz100730q
  • Young, R.M., Neumark, D.M., (2012) Chem. Rev., 112, p. 5553. , 10.1021/cr300042h
  • González, B.S., Noya, E.G., Vega, C., (2010) J. Phys. Chem. B, 114, p. 2484. , 10.1021/jp910770y
  • Zichi, D.A., Rossky, P.J., (1986) J. Chem. Phys., 84, p. 2823. , 10.1063/1.450308
  • Craig, I.R., Manolopoulos, D.E., (2004) J. Chem. Phys., 121, p. 3368. , 10.1063/1.1777575
  • Habershon, S., Manolopoulos, D.E., Markland, T.E., Miller III, T.F., (2013) Annu. Rev. Phys. Chem., 64, p. 387. , 10.1146/annurev-physchem-040412-110122
  • Miyake, T., Aida, M., (2006) Chem. Phys. Lett., 427, p. 215. , 10.1016/j.cplett.2006.06.077
  • Lee, H.M., Suh, S.B., Lee, J.Y., Tarakeshwar, P., Kim, K.S., (2000) J. Chem. Phys., 112, p. 9759. , 10.1063/1.481613
  • Tharrington, A.N., Jordan, K.D., (2003) J. Phys. Chem. A, 107, p. 7380. , 10.1021/jp030355f
  • Wales, D.J., Hodges, M.P., (1998) Chem. Phys. Lett., 286, p. 65. , 10.1016/S0009-2614(98)00065-7
  • James, T., Wales, D.J., Hernández-Rojas, J., (2005) Chem. Phys. Lett., 415, p. 302. , 10.1016/j.cplett.2005.09.019
  • Wales, D.J., Ohmine, I., (1993) J. Chem. Phys., 98, p. 7245. , 10.1063/1.464716
  • Wales, D.J., Ohmine, I., (1993) J. Chem. Phys., 98, p. 7257. , 10.1063/1.464717
  • Nguyen, Q.C., Ong, Y.S., So, H., Kuo, J.-L., (2008) J. Phys. Chem. A, 112, p. 6257. , 10.1021/jp802118j
  • Laria, D., Rodriguez, J., Dellago, C., Chandler, D., (2001) J. Phys. Chem. A, 105, p. 2646. , 10.1021/jp003955c
  • Masella, M., Jean-Pierre, F., (1999) J. Chem. Phys., 111, p. 5081. , 10.1063/1.479764
  • Nigra, P., Carignano, M.A., Kais, S., (2001) J. Chem. Phys., 115, p. 2621. , 10.1063/1.1385795
  • Tsai, C.J., Jordan, K.D., (1993) J. Phys. Chem., 97, p. 5208. , 10.1021/j100122a005
  • Knochenmuss, R., Leutwyler, S., (1992) J. Chem. Phys., 96, p. 5233. , 10.1063/1.462734
  • Belair, S.D., Francisco, J.S., (2003) Phys. Rev. A, 67, p. 063206. , 10.1103/PhysRevA.67.063206
  • Buck, U., Ettischer, I., Melzer, M., Buch, V., Sadlej, J., (1998) Phys. Rev. Lett., 80, p. 2578. , 10.1103/PhysRevLett.80.2578
  • Tsai, C.J., Jordan, K.D., (1991) J. Chem. Phys., 95, p. 3850. , 10.1063/1.460788
  • Pedulla, J.M., Jordan, K.D., (1998) Chem. Phys., 239, p. 593. , 10.1016/S0301-0104(98)00363-2
  • Gelman-Constantin, J., Carignano, M.A., Szleifer, I., Marceca, E.J., Corti, H.R., (2010) J. Chem. Phys., 133, p. 024506. , 10.1063/1.3455716
  • Asare, E., Musah, A.R., Curotto, E., Freeman, D.L., Doll, J.D., (2009) J. Chem. Phys., 131, p. 184508. , 10.1063/1.3259047
  • Shin, S., Son, W.-J., Jang, S., (2004) J. Mol. Struct.: THEOCHEM, 673, p. 109. , 10.1016/j.theochem.2003.12.005
  • Habershon, S., Markland, T.E., Manolopoulos, D.E., (2009) J. Chem. Phys., 131, p. 024501. , 10.1063/1.3167790
  • Paesani, F., Zhang, W., Case, D.A., Cheatham, T.E., Voth, G.A., (2006) J. Chem. Phys., 125, p. 184507. , 10.1063/1.2386157
  • Wang, Y., Babin, V., Bowman, J.M., Paesani, F., (2012) J. Am. Chem. Soc., 134, p. 11116. , 10.1021/ja304528m
  • Wang, Y., Huang, X., Shepler, B.C., Braams, B.J., Bowman, J.M., (2011) J. Chem. Phys., 134, p. 094509. , 10.1063/1.3554905
  • Babin, V., Medders, G.R., Paesani, F., (2012) J. Phys. Chem. Lett., 3, p. 3765. , 10.1021/jz3017733
  • Medders, G.R., Babin, V., Paesani, F., (2013) J. Chem. Theory Comput., 9, p. 1103. , 10.1021/ct300913g
  • Habershon, S., Fanourgakis, G.S., Manolopoulos, D.E., (2008) J. Chem. Phys., 129, p. 074501. , 10.1063/1.2968555
  • Tuckerman, M., Berne, B.J., Martyna, G.J., (1992) J. Chem. Phys., 97, p. 1990. , 10.1063/1.463137
  • Martyna, G.J., Tuckerman, M.E., Tobias, D.J., Klein, M.L., (1996) Mol. Phys., 87, p. 1117. , 10.1080/00268979600100761
  • Pérez, A., Tuckerman, M.E., Müser, M.H., (2009) J. Chem. Phys., 130, p. 184105. , 10.1063/1.3126950
  • Nichols, A.L., Chandler, D., Singh, Y., Richardson, D.M., (1984) J. Chem. Phys., 81, p. 5109. , 10.1063/1.447501
  • Witt, A., Ivanov, S.D., Shiga, M., Forbert, H., Marx, D., (2009) J. Chem. Phys., 130, p. 194510. , 10.1063/1.3125009
  • Hone, T.D., Rossky, P.J., Voth, G.A., (2006) J. Chem. Phys., 124, p. 154103. , 10.1063/1.2186636
  • Gallicchio, G., Berne, B.J., (1994) J. Chem. Phys., 101, p. 9909. , 10.1063/1.467892
  • Gallicchio, G., Berne, B.J., (1996) J. Chem. Phys., 105, p. 7064. , 10.1063/1.472508
  • Habershon, S., Braams, B.J., Manolopoulos, D.E., (2007) J. Chem. Phys., 127, p. 174108. , 10.1063/1.2786451
  • Stratt, R.M., (1995) Acc. Chem. Res., 28, p. 201. , 10.1021/ar00053a001
  • Zwanzig, R., (1983) J. Chem. Phys., 79, p. 4507. , 10.1063/1.446338
  • Nagel, S.R., Rahman, A., Grest, G.S., (1981) Phys. Rev. Lett., 47, p. 1665. , 10.1103/PhysRevLett.47.1665
  • Sadlej, J., Buch, V., Kazimirski, J.K., Buck, U., (1999) J. Phys. Chem. A, 103, p. 4933. , 10.1021/jp990546b
  • Wang, Y., Bowman, J.M., (2013) J. Phys. Chem. Lett., 4, p. 1104. , 10.1021/jz400414a
  • Rabani, E., Reichman, D.R., (2001) J. Phys. Chem. B., 105, p. 6550. , 10.1021/jp004419n
  • Rabani, E., Reichman, D.R., Krilov, G., Berne, B.J., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, p. 1129. , 10.1073/pnas.261540698
  • Herman, M., Bruskin, E.F., Berne, B.J., (1982) J. Chem. Phys., 76, p. 5150. , 10.1063/1.442815

Citas:

---------- APA ----------
Videla, P.E., Rossky, P.J. & Laria, D. (2013) . Nuclear quantum effects on the structure and the dynamics of [H 2O]8 at low temperatures. Journal of Chemical Physics, 139(17).
http://dx.doi.org/10.1063/1.4827935
---------- CHICAGO ----------
Videla, P.E., Rossky, P.J., Laria, D. "Nuclear quantum effects on the structure and the dynamics of [H 2O]8 at low temperatures" . Journal of Chemical Physics 139, no. 17 (2013).
http://dx.doi.org/10.1063/1.4827935
---------- MLA ----------
Videla, P.E., Rossky, P.J., Laria, D. "Nuclear quantum effects on the structure and the dynamics of [H 2O]8 at low temperatures" . Journal of Chemical Physics, vol. 139, no. 17, 2013.
http://dx.doi.org/10.1063/1.4827935
---------- VANCOUVER ----------
Videla, P.E., Rossky, P.J., Laria, D. Nuclear quantum effects on the structure and the dynamics of [H 2O]8 at low temperatures. J Chem Phys. 2013;139(17).
http://dx.doi.org/10.1063/1.4827935