Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the present work we complement a previous simulation study "R. Semino and D. Laria, J. Chem. Phys. 136, 194503 (2012)" on the disruption of the proton transfer mechanism in water by the addition of an aprotic solvent, such as acetone. We provide experimental measurements of the mobility of protons in aqueous-acetone mixtures in a wide composition range, for water molar fractions, xw, between 0.05 and 1.00. Furthermore, new molecular dynamics simulation results are presented for rich acetone mixtures, which provide further insight into the proton transport mechanism in water-non-protic solvent mixtures. The proton mobility was analyzed between xw 0.05 and 1.00 and compared to molecular dynamics simulation data. Results show two qualitative changes in the proton transport composition dependence at x w ∼ 0.25 and 0.8. At xw < 0.25 the ratio of the infinite dilution molar conductivities of HCl and LiCl, Λ 0HCl.Λ0LiCl-1, is approximately constant and equal to one, since the proton diffusion is vehicular and equal to that of Li+. At xw ∼ 0.25, proton mobility starts to differ from that of Li+ indicating that above this concentration the Grotthuss transport mechanism starts to be possible. Molecular dynamics simulation results showed that at this threshold concentration the probability of interconversion between two Eigen structures starts to be non-negligible. At xw ∼ 0.8, the infinite molar conductivity of HCl concentration dependence qualitatively changes. This result is in excellent agreement with the analysis presented in the previous simulation work and it has been ascribed to the interchange of water and acetone molecules in the second solvation shell of the hydronium ion. © 2013 AIP Publishing LLC.

Registro:

Documento: Artículo
Título:Excess protons in water-acetone mixtures. II. A conductivity study
Autor:Semino, R.; Longinotti, M.P.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, (1428), Buenos Aires, Argentina
Palabras clave:Composition dependence; Concentration dependence; Molar conductivities; Molecular dynamics simulations; Proton-transfer mechanism; Qualitative changes; Threshold concentrations; Transport mechanism; Acetone; Lithium; Molecular dynamics; Mixtures; acetone; hydrochloric acid; lithium chloride; proton; water; article; chemistry; conformation; molecular dynamics; Acetone; Hydrochloric Acid; Lithium Chloride; Molecular Conformation; Molecular Dynamics Simulation; Protons; Water
Año:2013
Volumen:139
Número:16
DOI: http://dx.doi.org/10.1063/1.4826464
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
CAS:acetone, 67-64-1; hydrochloric acid, 7647-01-0; lithium chloride, 7447-41-8; proton, 12408-02-5, 12586-59-3; water, 7732-18-5; Acetone, 1364PS73AF; Hydrochloric Acid, QTT17582CB; Lithium Chloride, G4962QA067; Protons; Water, 059QF0KO0R
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v139_n16_p_Semino

Referencias:

  • Semino, R., Laria, D., (2012) J. Chem. Phys., 136, p. 194503. , 10.1063/1.4717712
  • Stowell, M.H.B., McPhillips, T.M., Rees, D.C., Soltis, S.M., Abresch, E., Feher, G., (1997) Science, 276, p. 812. , 10.1126/science.276.5313.812
  • Norby, T., (1999) Solid State Ionics, 125, p. 1. , 10.1016/S0167-2738(99)00152-6
  • Formosinho, S.J., Arnaut, L.G., (1993) J. Photochem. Photobiol., A, 75, p. 21. , 10.1016/1010-6030(93)80158-6
  • Sineshchekov, O.A., Govorunova, E.G., Wang, J., Li, H., Spudich, J.L., (2013) Biophys. J., 104, p. 807. , 10.1016/j.bpj.2013.01.002
  • Diat, O., Gebel, G., (2008) Nature Mater., 7, p. 13. , 10.1038/nmat2091
  • Dong, B., Gwee, L., Salas De La Cruz, D., Winey, K.I., Elabd, Y.A., (2010) Nano Lett., 10, p. 3785. , 10.1021/nl102581w
  • Grotthuss, C.J.T., (1806) Ann. Chim., 58, p. 54
  • Robinson, R.A., Stokes, R.H., (1959) Electrolyte Solutions, , 2nd ed. (Butterworths, London)
  • Zundel, G., Metzger, H., (1968) Z. Phys. Chem., 58, p. 225. , 10.1524/zpch.1968.58.5-6.225
  • Eigen, M., De Maeyer, L., (1958) Proc. R. Soc. London, Ser. A, 247, p. 505. , 10.1098/rspa.1958.0208
  • Luz, Z., Meiboom, S., (1964) J. Am. Chem. Soc., 86, p. 4768. , 10.1021/ja01076a008
  • Schmitt, U.W., Voth, G.A., (1998) J. Phys. Chem. B, 102, p. 5547. , 10.1021/jp9818131
  • Schmitt, U.W., Voth, G.A., (1999) J. Chem. Phys., 111, p. 9361. , 10.1063/1.480032
  • Markovitch, O., Chen, H., Izvekov, S., Paesani, F., Voth, G.A., Agmon, N., (2008) J. Phys. Chem. B, 112, p. 9456. , 10.1021/jp804018y
  • Goffredi, M., Shedlovsky, T., (1967) J. Phys. Chem., 71, p. 2176. , 10.1021/j100866a032
  • Goffredi, M., Shedlovsky, T., (1967) J. Phys. Chem., 71, p. 2182. , 10.1021/j100866a033
  • Conway, B.E., Bockris, J.O'M., Linton, H., (1956) J. Chem. Phys., 24, p. 834. , 10.1063/1.1742619
  • Petersen, M.K., Voth, G.A., (2006) J. Phys. Chem. B, 110, p. 7085. , 10.1021/jp060698o
  • Morrone, J.A., Haslinger, K.E., Tuckerman, M.E., (2006) J. Phys. Chem. B, 110, p. 3712. , 10.1021/jp0554036
  • Stein, Z., Gileadi, E., (1985) J. Electrochem. Soc., 132, p. 2166. , 10.1149/1.2114310
  • Gileadi, E., Kirowa-Eisner, E., (2006) Elecrochim. Acta, 51, p. 6003. , 10.1016/j.electacta.2006.03.084
  • Castagnolo, M., Petrella, G., (1974) Electrochim. Acta, 19, p. 855. , 10.1016/0013-4686(74)85033-4
  • Boerner, B.R., Bates, R.G., (1978) J. Sol. Chem., 7, p. 245. , 10.1007/BF00644272
  • Brownson, T.K., Cray, F.M., (1925) J. Chem. Soc., Trans., 127, p. 2923. , 10.1039/ct9252702923
  • Bianchi, H., Corti, H.R., Fernandez Prini, R., (1987) J. Chem. Soc., Faraday Trans. 1, 83, p. 3027. , 10.1039/f19878303027
  • Goldfarb, D.L., Longinotti, M.P., Corti, H.R., (2001) J. Solution Chem., 30, p. 307. , 10.1023/A:1010334021934
  • Wu, Y.C., Koch, W.F., Hamer, W.J., Kay, R.L., (1987) J. Solution Chem., 16, p. 985. , 10.1007/BF00652583
  • Fuoss, R.M., Krauss, C.A., (1933) J. Am. Chem. Soc., 55, p. 2387. , 10.1021/ja01333a026
  • Fernández Prini, R., (1969) Trans. Faraday Soc., 65, p. 3311. , 10.1039/tf9696503311
  • Haynes, W.M., Lide, D., Bruno, T.J., (2012) CRC Handbook of Chemistry and Physics, , 93rd ed. (CRC Press), Section 5-77
  • Goldfarb, D.L., Corti, H.R., (2004) J. Chem. Phys. B, 108, p. 3358. , 10.1021/jp0345102
  • Akerlof, G., (1932) J. Am Chem. Soc., 54, p. 4125. , 10.1021/ja01350a001
  • Dash, U.N., Patnaik, M.R., (1999) Fluid Phase Equilib., 157, p. 159. , 10.1016/S0378-3812(98)00476-2
  • Stairs, R., (1980) Can. J. Chem., 58, p. 296. , 10.1139/v80-048
  • Noda, K., Ohashi, M., Ishida, K., (1982) J. Chem. Eng. Data, 27, p. 326. , 10.1021/je00029a028
  • Estrada-Baltazar, A., De Leon-Rodriguez, A., Hall, K.R., Ramos- Estrada, M., Iglesias-Silva, G.A., (2003) J. Chem. Eng. Data, 48, p. 1425. , 10.1021/je030102f
  • Day, T.J.F., Soudackov, A.V., Cuma, M., Schmitt, U.W., Voth, G.A., (2002) J. Chem. Phys, 117, p. 5839. , 10.1063/1.1497157
  • Wu, Y., Chen, H., Wang, F., Paesani, F., Voth, G.A., (2008) J. Phys. Chem. B, 112, p. 467. , 10.1021/jp076658h
  • Park, K., Lin, W., Paesani, F., (2012) J. Phys. Chem. B, 116, p. 343. , 10.1021/jp208946p
  • Knight, C., Voth, G.A., (2012) Acc. Chem. Res., 45, p. 101. , 10.1021/ar200140h
  • Warshel, A., Weiss, R.M., (1980) J. Am. Chem. Soc, 102, p. 6218. , 10.1021/ja00540a008
  • Warshel, A., (1991) Computer Modelling of Chemical Reactions in Enzymes and Solutions, , (Wiley, New York)
  • Born, M., (1920) Z. Phys., 1, p. 221. , 10.1007/BF01329168
  • Zanzing, R., (1970) J. Chem. Phys., 52, p. 3625. , 10.1063/1.1673535
  • Wolynes, P.G., (1980) Annu. Rev. Phys. Chem., 31, p. 345. , 10.1146/annurev.pc.31.100180.002021
  • Bagchi, B., Biswas, R., (1998) Acc. Chem. Res., 31, p. 181. , 10.1021/ar970226f
  • Srivastava, A.K., Shankar, S.L., (2000) J. Chem. Eng. Data, 45, p. 92. , 10.1021/je990185t
  • Fuoss, R.M., (1958) J. Am. Chem. Soc., 80, p. 5059. , 10.1021/ja01552a016
  • Wang, F., Izvekov, S., Voth, G.A., (2008) J. Am. Chem. Soc., 130, p. 3120. , 10.1021/ja078106i
  • Xu, J., Izvekov, S., Voth, G.A., (2010) J. Phys. Chem. B, 114, p. 9555. , 10.1021/jp102516h

Citas:

---------- APA ----------
Semino, R. & Longinotti, M.P. (2013) . Excess protons in water-acetone mixtures. II. A conductivity study. Journal of Chemical Physics, 139(16).
http://dx.doi.org/10.1063/1.4826464
---------- CHICAGO ----------
Semino, R., Longinotti, M.P. "Excess protons in water-acetone mixtures. II. A conductivity study" . Journal of Chemical Physics 139, no. 16 (2013).
http://dx.doi.org/10.1063/1.4826464
---------- MLA ----------
Semino, R., Longinotti, M.P. "Excess protons in water-acetone mixtures. II. A conductivity study" . Journal of Chemical Physics, vol. 139, no. 16, 2013.
http://dx.doi.org/10.1063/1.4826464
---------- VANCOUVER ----------
Semino, R., Longinotti, M.P. Excess protons in water-acetone mixtures. II. A conductivity study. J Chem Phys. 2013;139(16).
http://dx.doi.org/10.1063/1.4826464