Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nuclear magnetic shieldings of both carbon and hydrogen atoms of haluro methyl molecules are highly influenced by the substitution of one or more hydrogen by halogen heavy atoms. We applied the linear response elimination of small components, LRESC, formalism to calculate such shieldings and learn whether including only few terms is enough for getting quantitative reproduction of the total shieldings or not. First, we discuss the contribution of all leading relativistic corrections to σ(C), in CHX2I molecular models with X = H, F, and Cl, and show that spin-orbit (SO) effects are the main ones. After adding the SO effects to the non-relativistic (NR) results, we obtain ∼ 97 (93) of the total LRESC values for σ(C) (σ(H)). The magnitude of SO terms increases when the halogen atom becomes heavier. In this case, such contributions to σ(C) can be extrapolated as a function of Z, the halogen atomic number. Furthermore, when paramagnetic spin-orbit (PSO) contributions are also considered, we obtain results that are within 1 of the total LRESC value. Then we study in detail the main electronic mechanisms involved to contribute C and H shieldings on CHnX4 - n (n = 1, 3), and CHXYZ (X, Y, Z = F, Cl, Br, I) model compounds. The pattern of σ(C) for all series of compounds follows a normal halogen dependence (NHD), though with different rate of increase. A special family of compounds is that of CHF2X for which σnr(C) follows an inverse halogen dependence though the total shielding have a NHD due to the SO contributions. For the series CH3X (X = F, Cl, Br and I), we found that σSO ∼ ZX2.53. Another important finding of this work is the logarithmic dependence of σSO(C) with the substituent atomic number: ln σSO(C) = AX aX Z Y for both family of compounds CH2XY and CHX2Y. We also performed four-component calculations using the spin-free Hamiltonian to obtain SO contributions within a four-component framework. © 2012 American Institute of Physics.

Registro:

Documento: Artículo
Título:Relativistic effects on nuclear magnetic shieldings of CHnX 4-n and CHXYZ (X, Y, Z = H, F, Cl, Br, I)
Autor:Melo, J.I.; Maldonado, A.F.; Aucar, G.A.
Filiación:Physics Department, Natural and Exact Science Faculty, IFIBA Conicet, Buenos Aires, Argentina
Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina, Corrientes, Argentina
Institute of Modelling and Innovation on Technology, IMIT, Corrientes, Argentina
Palabras clave:Atomic numbers; Carbon and hydrogens; Electronic mechanisms; Halogen atoms; Heavy atoms; Inverse halogen dependence; Linear response; Logarithmic dependence; Model compound; Nuclear magnetic shieldings; Rate of increase; Relativistic correction; Relativistic effects; Small components; Spin orbits; Atoms; Bromine; Bromine compounds; Chlorine compounds; Hamiltonians; Hydrogen; Magnetic shielding; Paramagnetism; Chlorine
Año:2012
Volumen:137
Número:21
DOI: http://dx.doi.org/10.1063/1.4768470
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v137_n21_p_Melo

Referencias:

  • Pyykkö, P., (2012) Chem. Rev, 112, p. 371. , 10.1021/cr200042e
  • Vaara, J., (2007) Phys. Chem. Chem. Phys., 9, p. 5399. , 10.1039/b706135h
  • Aucar, G.A., Romero, R.H., Maldonado, A.F., (2010) Int. Rev. Phys. Chem., 29, p. 1. , 10.1080/01442350903432865
  • Autschbach, J., Zheng, S., (2009) Annu. Rep. NMR Spectrosc., 83, p. 1. , 10.1016/S0066-4103(09)06701-5
  • Xiao, Y., Sun, Q., Liu, W., (2012) Theor. Chem. Acc., 131, p. 1080. , 10.1007/s00214-011-1080-z
  • Ilia, M., Saue, T., Enevoldsen, T., Jensen, H.-J.A., (2009) J. Chem. Phys., 131, p. 124119. , 10.1063/1.3240198
  • Komorovsk, S., Repisk, M., Malkina, O.L., Malkin, V.G., (2010) J. Chem. Phys., 132, p. 154101. , 10.1063/1.3359849
  • Hamaya, S., Fukui, H., (2010) Bull. Chem. Soc. Jpn., 83, p. 635. , 10.1246/bcsj.20100028
  • Olejniczak, M., Bast, R., Saue, T., Pecul, M., (2012) J. Chem. Phys., 136, p. 234101. , 10.1063/1.4728026
  • Melo, J.I., Maldonado, A.F., Aucar, G.A., (2011) Theor. Chem. Acc., 129, p. 483. , 10.1007/s00214-010-0886-4
  • Maldonado, A.F., Giménez, C.A., Aucar, G.A., (2012) Chem. Phys., 395, p. 75. , 10.1016/j.chemphys.2011.08.020
  • Arcisauskaite, V., Melo, J.I., Hemmingsen, L., Sauer, S.P.A., (2011) J. Chem. Phys., 135, p. 044306. , 10.1063/1.3608153
  • Jameson, C.J., (1989) Multinuclear NMR, , (Plenum, New York)
  • Kaupp, M., (2004) Calculation of NMR and EPR Parameters: Theory and Applications, , in, edited by M. Kaupp, M. Bühl, and V. G. Malkin (Wiley-VCH Verlag GmbH, Weinheim, FRG), Cha 18
  • Kaupp, M., (2004) Relativistic Electronic Structure Theory II: Applications, , in, edited by P. Schwerdtfeger (Elsevier, Amsterdam), Cha 9
  • Fukawa, S., Hada, M., Fukuda, R., Tanaka, S., Nakatsuji, H., (2001) J. Comput. Chem., 22, p. 528. , 10.1002/1096-987X(20010415)22:5<528::AID-JCC1024>3.0.CO;2-9
  • Bagno, A., Casella, G., Saieli, G., (2006) J. Chem. Theory Comput., 2, p. 37. , 10.1021/ct050173k
  • Kato, M., Hada, M., Fukuda, R., Nakatsuji, H., (2005) Chem. Phys. Lett., 408, p. 150. , 10.1016/j.cplett.2005.03.147
  • Kaupp, M., Malkina, O., Malkin, V., Pyykkö, P., (1998) Chem.-Eur. J., 4, p. 118. , 10.1002/(SICI)1521-3765(199801)4:1<118::AID-CHEM118>3.0.CO;2-6
  • Pyykkö, P., Görling, A., Rösch, N., (1987) Mol. Phys., 61, p. 195. , 10.1080/00268978700101071
  • Melo, J.I., De Azúa, M.C.R., Giribet, C.G., Aucar, G.A., Romero, R.H., (2003) J. Chem. Phys., 118, p. 471. , 10.1063/1.1525808
  • Melo, J.I., De Azúa, M.C.R., Giribet, C.G., Aucar, G.A., Provasi, P.F., (2004) J. Chem. Phys., 121, p. 6798. , 10.1063/1.1787495
  • Visscher, L., Enevoldsen, T., Saue, T., Jensen, H., Oddershede, J., (1999) J. Comput. Chem., 20, p. 1262. , 10.1002/(SICI)1096-987X(199909)20:12<1262::AID-JCC6>3.0.CO;2-H
  • Enevoldsen, T., Visscher, L., Saue, T., Jensen, H.J.A., Oddershede, J., (2000) J. Chem. Phys., 112, p. 3493. , 10.1063/1.480504
  • Gómez, S.S., Romero, R.H., Aucar, G.A., (2002) J. Chem. Phys., 117, p. 7942. , 10.1063/1.1510731
  • Gómez, S.S., Romero, R.H., Aucar, G.A., (2003) Chem. Phys. Lett., 367, p. 265. , 10.1016/S0009-2614(02)01661-5
  • Gómez, S.S., Melo, J.I., Romero, R.H., Aucar, G.A., De Azúa, M.C.R., (2005) J. Chem. Phys., 122, p. 64103. , 10.1063/1.1845391
  • Lantto, P., Gomez, S.S., Romero, R.H., Aucar, G.A., Vaara, J., (2006) J. Chem. Phys., 125, p. 184113. , 10.1063/1.2378737
  • Maldonado, A.F., Aucar, G.A., (2009) Phys. Chem. Chem. Phys., 11, p. 5615. , 10.1039/b820609k
  • Moss, R.E., (1973) Advanced Molecular Quantum Mechanics, , (Chapman and Hall, London)
  • Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G., (1997) Photons and Atoms, , (Wiley, New York)
  • Bethe, A., Salpeter, E.E., (1977) Quantum Mechanics of One and Two Electron Atoms, , (Plenum, New York)
  • Dyall, K.G., Fægri, K., (2009) Introduction to Relativistic Quantum Chemistry, , (Oxford University Press)
  • Labzowsky, L.N., Klimchirskaya, G.L., Dmitriev, Y.Y., (1993) Relativistic Effects in the Spectra of Atomic Systems, , (Taylor Francis)
  • Dyall, K., (1994) J. Chem. Phys., 100, p. 2118. , 10.1063/1.466508
  • Wilczek, M., Kubiszewski, M., Jackowski, K., (2004) J. Mol. Struct., 704, p. 311. , 10.1016/j.molstruc.2003.11.061
  • http://www.kjemi.uio.no/software/dalton/dalton.html, DALTON, an ab initio electronic structure program, Release 2.0 (2005), see; De Azúa, M.C.R., Melo, J.I., Giribet, C.G., (2003) Mol. Phys., 101, p. 3103. , 10.1080/00268970310001617784
  • http://dx.doi.org/10.1063/1.4768470, See supplementary material at E-JCPSA6-137-038245 for basis sets used for each nuclei; Saue, T., Bakken, V., Enevoldsen, T., Helgaker, T., Jensen, H.J.A., Laerdahl, J.K., Ruud, K., Visscher, L., (2004), http://dirac.chem.sdu.dk, DIRAC is a relativistic ab initio electronic structure program, Release 4.2 (University of Southern Denmark, Odense), see; Frisch, M.J., Trucks, G.W., Schlegel, H.B., (1998), GAUSSIAN98, Revision A.7, Gaussian, Inc., Pittsburgh, PA; Provasi, P.F., Aucar, G.A., Sauer, S.P.A., (2001) J. Chem. Phys., 115, p. 1324. , 10.1063/1.1379331
  • Sadlej, A.J., (1988) Collect. Czech. Chem. Commun., 53, p. 1995. , 10.1135/cccc19881995
  • Zaccari, D.G., De Azúa, M.C.R., Melo, J.I., Giribet, C.G., (2006) J. Chem. Phys., 124, p. 054103. , 10.1063/1.2162541
  • Helgaker, T., Jorgensen, P., (1991) J. Chem. Phys., 95, p. 2595. , 10.1063/1.460912
  • Sadlej, A.J., (1991) Theor. Chim. Acta, 79, p. 123. , 10.1007/BF01127101
  • Vaara, J., Ruud, K., Vahtras, O., Ågren, H., Jokisaari, J., (1998) J. Chem. Phys., 109, p. 1212. , 10.1063/1.476672
  • Jackowski, K., Kubiszewski, M., Wilczek, M., (2007) Chem. Phys. Lett., 440, p. 176. , 10.1016/j.cplett.2007.04.040
  • Gómez, S.S., Aucar, G.A., (2011) J. Chem. Phys., 134, p. 204314. , 10.1063/1.3587051

Citas:

---------- APA ----------
Melo, J.I., Maldonado, A.F. & Aucar, G.A. (2012) . Relativistic effects on nuclear magnetic shieldings of CHnX 4-n and CHXYZ (X, Y, Z = H, F, Cl, Br, I). Journal of Chemical Physics, 137(21).
http://dx.doi.org/10.1063/1.4768470
---------- CHICAGO ----------
Melo, J.I., Maldonado, A.F., Aucar, G.A. "Relativistic effects on nuclear magnetic shieldings of CHnX 4-n and CHXYZ (X, Y, Z = H, F, Cl, Br, I)" . Journal of Chemical Physics 137, no. 21 (2012).
http://dx.doi.org/10.1063/1.4768470
---------- MLA ----------
Melo, J.I., Maldonado, A.F., Aucar, G.A. "Relativistic effects on nuclear magnetic shieldings of CHnX 4-n and CHXYZ (X, Y, Z = H, F, Cl, Br, I)" . Journal of Chemical Physics, vol. 137, no. 21, 2012.
http://dx.doi.org/10.1063/1.4768470
---------- VANCOUVER ----------
Melo, J.I., Maldonado, A.F., Aucar, G.A. Relativistic effects on nuclear magnetic shieldings of CHnX 4-n and CHXYZ (X, Y, Z = H, F, Cl, Br, I). J Chem Phys. 2012;137(21).
http://dx.doi.org/10.1063/1.4768470