Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We carried out molecular dynamics simulation experiments to examine equilibrium and dynamical characteristics of the solvation of excess protons in mesoscopic, [m:n] binary polar clusters comprising m 50 water molecules and n 6, 25, and 100 acetone molecules. Contrasting from what is found in conventional macroscopic phases, the characteristics of the proton solvation are dictated, to a large extent, by the nature of the concentration fluctuations prevailing within the clusters. At low acetone contents, the overall cluster morphology corresponds to a segregated aqueous nucleus coated by an external aprotic phase. Under these circumstances, the proton remains localized at the surface of the water core, in a region locally deprived from acetone molecules. At higher acetone concentrations, we found clear evidence of the onset of the mixing process. The cluster structures present aqueous domains with irregular shape, fully embedded within the acetone phase. Still, the proton remains coordinated to the aqueous phase, with its closest solvation shell composed exclusively by three water molecules. As the relative concentration of acetone increases, the time scales characterizing proton transfer events between neighboring water molecules show considerable retardations, stretching into the nanosecond time domain already for n ∼ 25. In water-rich aggregates, and similarly to what is found in the bulk, proton transfers are controlled by acetone/water exchange processes taking place at the second solvation shell of the proton. As a distinctive feature of the transfer mechanism, translocation pathways also include diffusive motions of the proton from the surface down into inner regions of the underlying water domain. © 2012 American Institute of Physics.

Registro:

Documento: Artículo
Título:Excess protons in mesoscopic water-acetone nanoclusters
Autor:Semino, R.; Martí, J.; Guàrdia, E.; Laria, D.
Filiación:Departamento de Quimica Inorganica Analitica y Quimica-Fisica e INQUIMAe, Facultad de Ciencias Exactas y Naturales, Pabellón II, 1428 Buenos Aires, Argentina
Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya-Barcelona Tech., B4-B5 Campus Nord, 08034 Barcelona, Spain
Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires, Argentina
Palabras clave:Acetone molecules; Aprotic; Aqueous phase; Cluster morphology; Cluster structure; Concentration fluctuation; Diffusive motions; Dynamical characteristics; Exchange process; Inner region; Irregular shape; Mesoscopics; Mixing process; Molecular dynamics simulations; Nano-second time domain; Polar cluster; Proton solvation; Relative concentration; Solvation shell; Time-scales; Transfer mechanisms; Translocation pathway; Water molecule; Molecular dynamics; Molecules; Proton transfer; Solvation; Superconducting materials; Acetone
Año:2012
Volumen:137
Número:19
DOI: http://dx.doi.org/10.1063/1.4766201
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00219606_v137_n19_p_Semino.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v137_n19_p_Semino

Referencias:

  • Wayne, R.P., (2000) Chemistry of Atmospheres, , (Oxford University Press, Cambridge/New York)
  • Keese, R.G., Castleman Jr., A.W., (1985) J. Geophys. Res., 90, p. 5885. , doi: 10.1029/JD090iD04p05885
  • Dalleska, N.F., Honma, K., Armentrout, P.B., (1993) J. Am. Chem. Soc., 115, p. 12125. , 10.1021/ja00078a059
  • Tissandier, M.D., Cowen, K.A., Feng, W.Y., Cundlach, E., Cohen, M.H., Eachart, A.D., Coes, J.V., Tuttle, T.R., (1998) J. Phys. Chem. A, 102, p. 7787. , 10.1021/jp982638r
  • Glezakou, V.-A., Dupuis, M., Mundy, C.J., (2007) Phys. Chem. Chem. Phys., 9, p. 5752. , 10.1039/b709752b
  • Vaida, V., (2011) J. Chem. Phys., 135, p. 020901. , 10.1063/1.3608919
  • Niedner-Schatteburg, G., Bondybey, V.E., FT-ICR studies of solvation effects in ionic water cluster reactions (2000) Chemical Reviews, 100 (11), pp. 4059-4086. , DOI 10.1021/cr990065o
  • Dermota, E., Zhong, Q., Castleman Jr., A.W., (2004) Chem. Rev., 104, p. 1861. , 10.1021/cr020665e
  • Kochanski, E., Kelterbaum, R., Klein, S., Rohmer, M.M., Rahmouni, A., (1997) Adv. Quantum Chem., 28, p. 273. , 10.1016/S0065-3276(08)60221-X
  • Huang, X.C., Cho, H.M., Carter, S., Ojamae, L., Boaman, J.M., Singer, S.J., (2003) J. Phys. Chem. A, 107, p. 7142. , 10.1021/jp035081a
  • Burnham, C.J., Petersen, M.K., Day, T.J.F., Iyengar, S.S., Voth, G.A., The properties of ion-water clusters. II. Solvation structures of Na +, Cl-, and H+ clusters as a function of temperature (2006) Journal of Chemical Physics, 124 (2), pp. 1-9. , DOI 10.1063/1.2149375, 024327
  • Iyengar, S.S., Petersen, M.K., Day, T.J.F., Burnham, C.J., Teige, V.E., Voth, G.A., The properties of ion-water clusters. I. the protonated 21-water cluster (2005) Journal of Chemical Physics, 123 (8), pp. 1-9. , DOI 10.1063/1.2007628, 084309
  • Chang, H.-C., Wu, C.-C., Kuo, J.-L., (2005) Int. Rev. Phys. Chem., 24, p. 553. , 10.1080/01442350500448116
  • Ahmed, M., Apps, C.J., Hughes, C., Wat, N.E., Whitehead, J.C., (1997) J. Phys. Chem. A, 101, p. 1250. , 10.1021/jp9622142
  • Wakisaka, A., Adboul-Carime, H., Yamamoto, Y., Kiyozumi, Y., (1998) J. Chem. Soc., Faraday Trans., 94, p. 369. , 10.1039/a705777f
  • Molinero, V., Laria, D., Kapral, R., Mixing and segregation in binary polar-molecule clusters (1998) Journal of Chemical Physics, 109 (16), pp. 6844-6853. , DOI 10.1063/1.477251, PII S0021960698515401
  • Schindler, T., Berg, C., Niedner-Schatteburg, G., Bondybey, V.E., Reactions of water clusters H+(H2O)n, n = 3-75, with diethyl ether (1995) Chemical Physics, 201 (2-3), pp. 491-496. , DOI 10.1016/0301-0104(95)00288-X
  • Lyktey, M.M.Y., Deleon, R.L., Shores, K.S., Furlani, T., Garvey, J.F., (2000) J. Phys. Chem. A, 104, p. 5197. , 10.1021/jp000872n
  • Kittaka, S., Kuranishi, M., Ishimaru, S., Umahara, O., Phase separation of acetonitrile-water mixtures and minimizing of ice crystallites from there in confinement of MCM-41 (2007) Journal of Chemical Physics, 126 (9), p. 091103. , DOI 10.1063/1.2712432
  • Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, p. 12744. , 10.1021/jp905920m
  • Rodriguez, J., Elola, M.D., Laria, D., (2010) J. Phys. Chem. B, 114, p. 7900. , 10.1021/jp101836b
  • Deakyne, C.A., Meot-Ner, M., Campbell, C.L., Hughes, M.G., Murphy, S.P., (1986) J. Chem. Phys., 84, p. 4958. , 10.1063/1.449982
  • Chang, H.-C., Jiang, J.-C., Hahndorf, I., Lin, S.H., Lee, Y.T., Chang, H.-C., Migration of an excess proton upon asymmetric hydration: H +[(CH3)2O](H2O)(n) as a model system (1999) Journal of the American Chemical Society, 121 (18), pp. 4443-4450. , DOI 10.1021/ja983353v
  • Achatz, U., Joos, S., Berg, C., Schindler, T., Beyer, M., Albert, G., Niedner-Schatteburg, G., Bondybey, V.E., Acid-base catalyzed reactions in ionic water clusters (1998) Journal of the American Chemical Society, 120 (8), pp. 1876-1882. , DOI 10.1021/ja971869t
  • Kawai, Y., Yamaguchi, S., Okada, Y., Takeuchi, K., (2002) Int. J. Mass. Spectrom., 220, p. 375. , 10.1016/S1387-3806(02)00840-0
  • Meot-Ner, M., Scheiner, S., Yu, W.O., Ionic hydrogen bonds in bioenergetics. 3. Proton transport in membranes, modeled by ketone/water clusters (1998) Journal of the American Chemical Society, 120 (28), pp. 6980-6990. , DOI 10.1021/ja971663s
  • Wei, S., Tzeng, W.B., Keese, R.G., Castleman Jr., A.W., (1991) J. Am. Chem. Soc., 113, p. 1960. , 10.1021/ja00006a015
  • Semino, R., Laria, D., (2012) J. Chem. Phys., 136, p. 194503. , 10.1063/1.4717712
  • Petersen, M.K., Iyengar, S.S., Day, T.J.F., Voth, G.A., (2004) J. Phys. Chem. B, 108, p. 14804. , 10.1021/jp046716o
  • Iyengar, S.S., Day, T.J.F., Voth, G.A., On the amphiphilic behavior of the hydrated proton: An ab initio molecular dynamics study (2005) International Journal of Mass Spectrometry, 241 (2), pp. 197-204. , DOI 10.1016/j.ijms.2004.12.003
  • Mucha, M., Frigato, T., Levering, L.M., Allen, H.C., Tobias, D.J., Dang, L.X., Jungwirth, P., Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions (2005) Journal of Physical Chemistry B, 109 (16), pp. 7617-7623. , DOI 10.1021/jp0445730
  • Vácha, R., Buch, V., Milet, A., Devlin, J.P., Jungwirth, P., (2007) Phys. Chem. Chem. Phys., 9, p. 4736. , 10.1039/B704491G
  • Jagoda-Cwiklik, B., Cwiklik, L., Jungwirth, P., (2011) J. Phys. Chem. A, 115, p. 5881. , 10.1021/jp110078s
  • Takahasi, H., Maruyama, K., Karino, Y., Morita, A., Nakano, M., Jungwirth, P., Matubayasi, N., (2011) J. Phys. Chem. B, 115, p. 4745. , 10.1021/jp2015676
  • Petersen, M.K., Voth, G.A., (2006) J. Phys. Chem. B, 110, p. 7085. , 10.1021/jp060698o
  • Morrone, J.A., Haslinger, K.E., Tuckerman, M.E., (2006) J. Phys. Chem. B, 110, p. 3712. , 10.1021/jp0554036
  • Iuchi, S., Chen, H., Paesani, F., Voth, G.A., (2009) J. Phys. Chem. B, 113, p. 4017. , 10.1021/jp805304j
  • Schmitt, U.W., Voth, G.A., (1998) J. Phys. Chem. B, 102, p. 5547. , 10.1021/jp9818131
  • Schmitt, U.W., Voth, G.A., (1999) J. Chem. Phys., 111, p. 9361. , 10.1063/1.480032
  • Vuilleumier, R., Borgis, D., (1998) Classical and Quantum Dynamics in Condensed Phase Simulations, , edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore), Cha 30
  • Voth, G.A., (2006) Acc. Chem. Res., 39, p. 143. , 10.1021/ar0402098
  • Knight, C., Voth, G.A., (2012) Acc. Chem. Res., 45, p. 101. , 10.1021/ar200140h
  • Warshel, A., Weiss, R.M., (1980) J. Am. Chem. Soc., 102, p. 6218. , 10.1021/ja00540a008
  • Warshel, A., (1991) Computer Modelling of Chemical Reactions in Enzymes and Solutions, , (Wiley, New York)
  • Wu, Y., Chen, H., Wang, F., Paesani, F., Voth, G.A., An improved multistate empirical valence bond model for aqueous proton solvation and transport (2008) Journal of Physical Chemistry B, 112 (2), pp. 467-482. , DOI 10.1021/jp076658h
  • Baer, M., Marx, D., Mathias, G., (2011) ChemPhysChem, 12, p. 1906. , 10.1002/cphc.201000955
  • Eigen, M., De Maeyer, L., (1958) Proc. R. Soc. London, Ser. A, 247, p. 505. , 10.1098/rspa.1958.0208
  • Zhang, D., Gutow, J.H., Eisenthal, K.B., Henz, T.F., (1993) J. Chem. Phys., 98, p. 5099. , Similar concentration enhancements have been reported at the bare interface of water/acetonitrile bulk solutions. See, for example, ; 10.1063/1.464933
  • Rao, Y., Turro, N.J., Eisenthal, K.B., (2009) J. Phys. Chem. C, 113, p. 14384. , 10.1021/jp902933e
  • Pártay, L.B., Jedlovszky, P., Horvai, G., (2009) J. Phys. Chem. C, 113, p. 18173. , 10.1021/jp901832r
  • Chandler, D., (1987) Introduction to Modern Statistical Mechanics, , See, for example, in (Oxford University Press, New York), Cha 8
  • Zundel, G., Metzger, H., (1968) Z. Phys. Chem., 58, p. 225. , 10.1524/zpch.1968.58.5-6.225
  • Rodriguez, J., Marti, J., Guardia, E., Laria, D., Protons in non-ionic aqueous reverse micelles (2007) Journal of Physical Chemistry B, 111 (17), pp. 4432-4439. , DOI 10.1021/jp0703410
  • Zhang, C., Knyazev, D.G., Vereshaga, Y.A., Ippoliti, E., Nguyen, T.H., Carloni, P., Pohl, P., (2012) Proc. Natl. Acad. Sci. U.S.A., 109, p. 9744. , 10.1073/pnas.1121227109

Citas:

---------- APA ----------
Semino, R., Martí, J., Guàrdia, E. & Laria, D. (2012) . Excess protons in mesoscopic water-acetone nanoclusters. Journal of Chemical Physics, 137(19).
http://dx.doi.org/10.1063/1.4766201
---------- CHICAGO ----------
Semino, R., Martí, J., Guàrdia, E., Laria, D. "Excess protons in mesoscopic water-acetone nanoclusters" . Journal of Chemical Physics 137, no. 19 (2012).
http://dx.doi.org/10.1063/1.4766201
---------- MLA ----------
Semino, R., Martí, J., Guàrdia, E., Laria, D. "Excess protons in mesoscopic water-acetone nanoclusters" . Journal of Chemical Physics, vol. 137, no. 19, 2012.
http://dx.doi.org/10.1063/1.4766201
---------- VANCOUVER ----------
Semino, R., Martí, J., Guàrdia, E., Laria, D. Excess protons in mesoscopic water-acetone nanoclusters. J Chem Phys. 2012;137(19).
http://dx.doi.org/10.1063/1.4766201