Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This paper presents a modified grand canonical ensemble which provides a new simple and efficient scheme to study few-body fluid-like inhomogeneous systems under confinement. The new formalism is implemented to investigate the exact thermodynamic properties of a hard sphere (HS) fluid-like system with up to three particles confined in a spherical cavity. In addition, the partition function of this system was used to analyze the surface thermodynamic properties of the many-HS system and to derive the exact curvature dependence of both the surface tension and adsorption in powers of the density. The expressions for the surface tension and the adsorption were also obtained for the many-HS system outside of a fixed hard spherical object. We used these results to derive the dependence of the fluid-substrate Tolman length up to first order in density. © 2012 American Institute of Physics.

Registro:

Documento: Artículo
Título:An exact formalism to study the thermodynamic properties of hard-sphere systems under spherical confinement
Autor:Urrutia, I.; Castelletti, G.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET), Departamento de Física, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, (RA-1650) San Martín, Buenos Aires, Argentina
Instituto de Astronomía y Física Del Espacio (CONICET-UBA), Ciudad Universitaria, Cdad. Aut. de Buenos Aires, Argentina
Palabras clave:First order; Grand canonical ensemble; Hard spheres; Hard-sphere system; Inhomogeneous system; Partition functions; Spherical cavities; Spherical objects; Adsorption; Surface tension; Thermodynamic properties; Spheres
Año:2012
Volumen:136
Número:22
DOI: http://dx.doi.org/10.1063/1.4729249
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v136_n22_p_Urrutia

Referencias:

  • Dunkel, J., Hilbert, S., (2006) Physica A, 370, p. 390. , 10.1016/j.physa.2006.05.018
  • Neimark, A.V., Vishnyakov, A., (2006) J. Phys. Chem. B, 110, p. 9403. , 10.1021/jp056407d
  • Perret, E., Nygård, K., Satapathy, D.K., Balmer, T.E., Bunk, O., Heuberger, M., Veen, J.F.V.D., (2010) J. Phys.: Condens. Matter, 22, p. 235102. , 10.1088/0953-8984/22/23/235102
  • Gonzalez, A., White, J.A., Román, F.L., Velasco, S., (2006) J. Chem. Phys., 125, p. 064703. , 10.1063/1.2227389
  • Hansen, J.P., McDonald, I.R., (2006) Theory of Simple Liquids, , 3rd ed. (Academic, Amsterdam)
  • Roth, R., (2010) J. Phys.: Condens. Matter, 22, p. 063102. , 10.1088/0953-8984/22/6/063102
  • Hill, T.L., (1956) Statistical Mechanics, , (Dover, New York)
  • Yang, C.N., Lee, T.D., (1952) Phys. Rev., 87, p. 404. , 10.1103/PhysRev.87.404
  • Woods, G.B., Panagiotopoulos, A.Z., Rowlinson, J.S., (1988) Mol. Phys., 63, p. 49. , 10.1080/00268978800100051
  • Urrutia, I., (2008) J. Stat. Phys., 131, p. 597. , 10.1007/s10955-008-9513-3
  • e-print arXiv:cond-mat/0609608; Urrutia, I., Szybisz, L., (2010) J. Math. Phys., 51, p. 033303. , 10.1063/1.3319560
  • e-print arXiv:0909.0246; Urrutia, I., (2010) J. Chem. Phys., 133, p. 104503. , 10.1063/1.3469773
  • e-print arXiv:1005.0723; Urrutia, I., (2011) J. Chem. Phys., 135, p. 024511. , 10.1063/1.3609796
  • Urrutia, I., (2011) J. Chem. Phys., 135, p. 099903. , 10.1063/1.3636380
  • Carnahan, N.F., Starling, K.E., (1969) J. Chem. Phys., 51, p. 635. , 10.1063/1.1672048
  • Kolafa, J., Labík, S., Malijevsk, A., (2004) Phys. Chem. Chem. Phys., 6, p. 2335. , 10.1039/b402792b
  • Bannerman, M.N., Lue, L., Woodcock, L.V., (2010) J. Chem. Phys., 132, p. 084507. , 10.1063/1.3328823
  • Bellemans, A., (1962) Physica, 28, p. 493. , 10.1016/0031-8914(62)90037-X
  • Siderius, D.W., Corti, D.S., (2006) Ind. Eng. Chem. Res., 45, p. 5489. , http://pubs.acs.org/doi/pdf/10.1021/ie051038t, see. 10.1021/ie051038t
  • Siderius, D.W., Corti, D.S., (2007) J. Chem. Phys., 127, p. 144502. , 10.1063/1.2768967
  • Heni, M., Löwen, H., (2001) J. Phys.: Condens. Matter, 13, p. 4675. , 10.1088/0953-8984/13/21/304
  • Laird, B.B., Davidchack, R.L., (2010) J. Chem. Phys., 132, p. 204101. , 10.1063/1.3428383
  • Chatterjee, S., Debenedetti, P.G., Stillinger, F.H., (2006) J. Chem. Phys., 125, p. 204505. , 10.1063/1.2374890

Citas:

---------- APA ----------
Urrutia, I. & Castelletti, G. (2012) . An exact formalism to study the thermodynamic properties of hard-sphere systems under spherical confinement. Journal of Chemical Physics, 136(22).
http://dx.doi.org/10.1063/1.4729249
---------- CHICAGO ----------
Urrutia, I., Castelletti, G. "An exact formalism to study the thermodynamic properties of hard-sphere systems under spherical confinement" . Journal of Chemical Physics 136, no. 22 (2012).
http://dx.doi.org/10.1063/1.4729249
---------- MLA ----------
Urrutia, I., Castelletti, G. "An exact formalism to study the thermodynamic properties of hard-sphere systems under spherical confinement" . Journal of Chemical Physics, vol. 136, no. 22, 2012.
http://dx.doi.org/10.1063/1.4729249
---------- VANCOUVER ----------
Urrutia, I., Castelletti, G. An exact formalism to study the thermodynamic properties of hard-sphere systems under spherical confinement. J Chem Phys. 2012;136(22).
http://dx.doi.org/10.1063/1.4729249