Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The influence of the spin-Zeeman (SZ) operator in the evaluation of the spin-orbit effect on the nuclear magnetic shielding tensor in the context of the linear response within the elimination of the small component approach is critically discussed. It is shown that such term yields no contribution to the isotropic nuclear magnetic shielding constant, but it may be of great importance in the determination of individual tensor components, and particularly of the tensor anisotropy. In particular, an interesting relation between the SZ and orbital Zeeman contributions to the spin-orbit effect for the case of linear molecules is shown to hold. Numerical examples for the BrH, IH, and XeF 2 molecules are presented which show that, provided the SZ term is taken into account, results of the individual shielding tensor components and the tensor anisotropy are in good agreement with those obtained by other theoretical methods, and particularly by the Dirac-Hartree-Fock approach. © 2011 American Institute of Physics.

Registro:

Documento: Artículo
Título:NMR nuclear magnetic shielding anisotropy of linear molecules within the linear response within the elimination of the small component approach
Autor:Ruiz De Aza, M.C.; Giribet, C.G.; Melo, J.I.
Filiación:Dpto. de Fsica, Facultad de Ciencias Exactas y Naturales, Cdad. Universitaria, Pab. I, (1428) Buenos Aires, Argentina
Palabras clave:Hartree-Fock approach; Linear molecules; Linear response; Nuclear magnetic shieldings; Numerical example; Shielding tensors; Small components; Spin-orbit effects; Tensor components; Zeeman contribution; Magnetic anisotropy; Molecules; Nuclear magnetic resonance; Tensors; Magnetic shielding; bromine; fluoride; hydrogen; iodine; xenon; anisotropy; article; chemistry; magnetism; nuclear magnetic resonance spectroscopy; quantum theory; Anisotropy; Bromine; Fluorides; Hydrogen; Iodine; Magnetic Resonance Spectroscopy; Magnetics; Quantum Theory; Xenon
Año:2011
Volumen:134
Número:3
DOI: http://dx.doi.org/10.1063/1.3528717
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
CAS:bromine, 7726-95-6; fluoride, 16984-48-8; hydrogen, 12385-13-6, 1333-74-0; iodine, 7553-56-2; xenon, 7440-63-3; Bromine, 7726-95-6; Fluorides; Hydrogen, 1333-74-0; Iodine, 7553-56-2; Xenon, 7440-63-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v134_n3_p_RuizDeAza

Referencias:

  • Autschbach, J., Zheng, S., (2009) Annu. Rep. NMR Spectrosc., 67, p. 1. , 10.1016/S0066-4103(09)06701-5
  • Casabianca, L.B., De Dios, A.C., Ab initio calculations of NMR chemical shifts (2008) Journal of Chemical Physics, 128 (5), p. 052201. , DOI 10.1063/1.2816784
  • Manninen, P., Ruud, K., Lantto, P., Vaara, J., Leading-order relativistic effects on nuclear magnetic resonance shielding tensors (2005) Journal of Chemical Physics, 122 (11), pp. 1-8. , DOI 10.1063/1.1861872, 114107
  • Manninen, P., Ruud, K., Lantto, P., Vaara, J., (2006) J. Chem. Phys., 124, p. 149901. , 10.1063/1.2181967
  • Melo, J.I., Ruiz De Aza, M.C., Giribet, C.G., Aucar, G.A., Romero, R.H., (2003) J. Chem. Phys., 118, p. 471. , 10.1063/1.1525808
  • Zaccari, D.G., De Azua, M.C.R., Melo, J.I., Giribet, C.G., Formal relations connecting different approaches to calculate relativistic effects on molecular magnetic properties (2006) Journal of Chemical Physics, 124 (5), pp. 1-13. , DOI 10.1063/1.2162541, 054103
  • Melo, J.I., Ruiz De Aza, M.C., Giribet, C.G., Aucar, G.A., Provasi, P.F., (2004) J. Chem. Phys., 121, p. 6798. , 10.1063/1.1787495
  • Straka, M., Lantto, P., Rsnen, M., Vaara, J., (2007) J. Chem. Phys., 127, p. 234314. , 10.1063/1.2805389
  • Lantto, P., Vaara, J., Xe129 chemical shift by the perturbational relativistic method: Xenon fluorides (2007) Journal of Chemical Physics, 127 (8), p. 084312. , DOI 10.1063/1.2759205
  • Gomez, S.S., Melo, J.I., Romero, R.H., Aucar, G.A., De Azua, M.R., Relativistic corrections to the diamagnetic term of the nuclear magnetic shielding: Analysis of contributions from localized orbitals (2005) Journal of Chemical Physics, 122 (6), pp. 1-7. , DOI 10.1063/1.1845391, 064103
  • Moss, R.E., (1973) Advanced Molecular Quantum Mechanics, , (Chapman and Hall, London)
  • Jrgensen, P., Simon, J., (1981) Second Quantization-based Methods in Quantum Chemistry, , (Academic, New York)
  • Helgaker, T., Jensen, H.J.Aa., Joergensen, P., Olsen, J., Ruud, K., Aagren, H., Auer, A.A., Vahtras, O., (2001), DALTON, a molecular electronic structure program, Release 1.2; Enevoldsen, T., Oddershede, J., Sauer, S.P.A., (1998) Theor. Chem. Acc., 100, p. 275. , 10.1007/s002140050388
  • Provasi, P.F., Aucar, G.A., Sauer, S.P.A., The effect of lone pairs and electronegativity on the indirect nuclear spin-spin coupling constants in CH2X (X=CH2, NH, O, S): Ab initio calculations using optimized contracted basis sets (2001) Journal of Chemical Physics, 115 (3), pp. 1324-1334. , DOI 10.1063/1.1379331
  • Dyall, K.G., (1998) Theor. Chem. Acc., 99, p. 366. , 10.1007/s002140050017
  • Burger, H., Kuna, R., Ma, S., Breidung, J., Thiel, W., (1994) J. Chem. Phys., 101, p. 1. , 10.1063/1.468170
  • Jameson, C.J., Gutowsky, H.S., (1964) J. Chem. Phys., 40, p. 2285. , 10.1063/1.1725506
  • Gerken, M., Hazendonk, P., Nieboer, J., Schrobilgen, G.J., (2004) J. Fluorine Chem., 125, p. 1163. , 10.1016/j.jfluchem.2004.04.001
  • Forgeron, M.A.M., Wasylishen, R.E., Penner, G.H., (2004) J. Phys. Chem. A, 108, p. 4751. , 10.1021/jp031279j
  • Antusek, A., Pecul, M., Sadlej, J., Relativistic calculation of NMR properties of XeF2, XeF 4 and XeF6 (2006) Chemical Physics Letters, 427 (4-6), pp. 281-288. , DOI 10.1016/j.cplett.2006.06.099, PII S0009261406009687
  • Kudo, K., Ootani, Y., Funaki, M., Fukui, H., (2006) J. Chem. Phys., 124, p. 116101. , 10.1063/1.2173999
  • Zaccari, D., Melo, J.I., Ruiz De Aza, M.C., Giribet, C.G., (2009) J. Chem. Phys., 130, p. 084102. , 10.1063/1.3063639
  • Ingman, L.P., Jokisaari, J., Oikarinen, K., Seydoux, R., (1994) J. Magn. Reson., Ser. A, 111, p. 155. , 10.1006/jmra.1994.1241
  • Kudo, K., Maeda, H., Kawakubo, T., Ootani, Y., Funaki, M., Fukui, H., Relativistic calculation of nuclear magnetic shielding using normalized elimination of the small component (2006) Journal of Chemical Physics, 124 (22), p. 224106. , DOI 10.1063/1.2204606
  • Hamaya, S., Maeda, H., Funaki, M., Fukui, H., (2008) J. Chem. Phys., 129, p. 224103. , 10.1063/1.3028047

Citas:

---------- APA ----------
Ruiz De Aza, M.C., Giribet, C.G. & Melo, J.I. (2011) . NMR nuclear magnetic shielding anisotropy of linear molecules within the linear response within the elimination of the small component approach. Journal of Chemical Physics, 134(3).
http://dx.doi.org/10.1063/1.3528717
---------- CHICAGO ----------
Ruiz De Aza, M.C., Giribet, C.G., Melo, J.I. "NMR nuclear magnetic shielding anisotropy of linear molecules within the linear response within the elimination of the small component approach" . Journal of Chemical Physics 134, no. 3 (2011).
http://dx.doi.org/10.1063/1.3528717
---------- MLA ----------
Ruiz De Aza, M.C., Giribet, C.G., Melo, J.I. "NMR nuclear magnetic shielding anisotropy of linear molecules within the linear response within the elimination of the small component approach" . Journal of Chemical Physics, vol. 134, no. 3, 2011.
http://dx.doi.org/10.1063/1.3528717
---------- VANCOUVER ----------
Ruiz De Aza, M.C., Giribet, C.G., Melo, J.I. NMR nuclear magnetic shielding anisotropy of linear molecules within the linear response within the elimination of the small component approach. J Chem Phys. 2011;134(3).
http://dx.doi.org/10.1063/1.3528717