El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Continuum solvent models have become a standard technique in the context of electronic structure calculations, yet no implementations have been reported capable to perform molecular dynamics at solid-liquid interfaces. We propose here such a continuum approach in a density functional theory framework using plane-wave basis sets and periodic boundary conditions. Our work stems from a recent model designed for Car-Parrinello simulations of quantum solutes in a dielectric medium [D. A. Scherlis, J. Chem. Phys. 124, 074103 (2006)], for which the permittivity of the solvent is defined as a function of the electronic density of the solute. This strategy turns out to be inadequate for systems extended in two dimensions: the dependence of the dielectric function on the electronic density introduces a new term in the Kohn-Sham potential, which becomes unphysically large at the interfacial region, seriously affecting the convergence of the self-consistent calculations. If the dielectric medium is properly redefined as a function of the atomic coordinates, a good convergence is obtained and the constant of motion is conserved during the molecular dynamics simulations. The Poisson problem is solved using a multigrid method, and in this way Car-Parrinello molecular dynamics simulations of solid-liquid interfaces can be performed at a very moderate computational cost. This scheme is employed to investigate the acid-base equilibrium at the TiO2 -water interface. The aqueous behavior of titania surfaces has stimulated a large amount of experimental research, but many open questions remain concerning the molecular mechanisms determining the chemistry of the interface. Here we make an attempt to answer some of them, putting to the test our continuum model. © 2009 American Institute of Physics.


Documento: Artículo
Título:First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent
Autor:Sánchez, V.M.; Sued, M.; Scherlis, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Pab. II, Buenos Aires C1428EHA, Argentina
Palabras clave:A-density; Acid-base equilibria; Atomic coordinate; Car-Parrinello molecular dynamics simulations; Car-Parrinello simulation; Computational costs; Constant of motion; Continuum model; Continuum solvents; Dielectric functions; Dielectric medium; Electronic density; Electronic structure calculations; Experimental research; First-principles; Interfacial region; Kohn-Sham potential; Molecular dynamics simulations; Molecular mechanism; Multigrid methods; Periodic boundary conditions; Plane-wave basis set; Poisson problem; Self-consistent calculation; Solid-liquid interfaces; TiO; Two-dimension; Water interface; Continuum mechanics; Density functional theory; Dynamics; Electronic structure; Liquids; Molecular dynamics; Poisson equation; Simulators; Solvents; Titanium dioxide; Titanium oxides; Phase interfaces
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys


  • Carter, E.A., Kroes, G.J., Challenges in Theoretical Chemistry (2008) Challenges in Theoretical Chemistry, 321 (5890), p. 800. , See in particular:, in "," special issue of Science 0036-8075 (), () 10.1126/science.1158009;, in "," special issue of Science 0036-8075 321 (5890), 794 (2008). 10.1126/science.1157717
  • Bruch, L.W., Diehl, R.D., Venables, J.A., Progress in the measurement and modeling of physisorbed layers (2007) Reviews of Modern Physics, 79 (4), pp. 1381-1454. , RevModPhys.79.1381&metadataPrefix=oai_apsmeta_2, DOI 10.1103/RevModPhys.79.1381
  • Nilsson, A., Pettersson, L.G.M., (2004) Surf. Sci. Rep., 55, p. 49. , 0167-5729 10.1016/j.surfre2004.06.002
  • Diebold, U., (2003) Surf. Sci. Rep., 48, p. 53. , 0167-5729 10.1016/S0167-5729(02)00100-0
  • Tilocca, A., Selloni, A., Mukhopadhyay, A.B., Musgrave, C.B., Fdez Sanz, J., (2004) Langmuir, 20, p. 8379. , It is possible to find in the literature a few number of studies in which one or several layers of water molecules are incorporated to represent the solvent. See, for example, 0743-7463, () 10.1021/la048937r;, J. Am. Chem. Soc. 0002-7863 130, 11996 (2008). 10.1021/ja801616u
  • Cramer, C.J., Truhlar, D.G., (1999) Chem. Rev. (Washington, D.C.), 99, p. 2161. , 0009-2665 10.1021/cr960149m
  • Levine, I.N., (2000) Quantum Chemistry, , (Prentice-Hall, New Jersey)
  • Schlick, T., (2002) Molecular Modeling and Simulation, , (Springer-Verlag, New York)
  • Tomasi, J., Mennucci, B., Cammi, R., Quantum mechanical continuum solvation models (2005) Chemical Reviews, 105 (8), pp. 2999-3093. , DOI 10.1021/cr9904009
  • De Angelis, F., Sgamellotti, A., Cossi, M., Rega, N., Barone, V., (2000) Chem. Phys. Lett., 328, p. 302. , 0009-2614 10.1016/S0009-2614(00)00952-0
  • Fattebert, J.-L., Gygi, F., (2003) Int. J. Quantum Chem., 93, p. 139. , 0020-7608 10.1002/qua.10548
  • Senn, H.M., Margi, P.M., Schmid, R., Ziegler, T., Blöchl, P., (2003) J. Chem. Phys., 118, p. 1089. , 0021-9606 10.1063/1.1528890
  • Scherlis, D.A., Fattebert, J.-L., Gygi, F., Cococcioni, M., Marzari, N., A unified electrostatic and cavitation model for first-principles molecular dynamics in solution (2006) Journal of Chemical Physics, 124 (7), p. 074103. , DOI 10.1063/1.2168456
  • Petrosyan, S.A., Rigos, A.A., Arias, T.A., Petrosyan, S.A., Briere, J.-F., Roundy, D., Arias, T.A., (2005) J. Phys. Chem. B, 109, p. 15436. , Arias and co-workers devised a form of DFT for the self-consistent embedding of quantum-mechanical systems in a dielectric medium. This approach has been applied to investigate the atomic and electronic structure of the Cr2 O3 surface in solution by means of static calculations. See, 1089-5647, () 10.1021/jp044822k;, Phys. Rev. B 0163-1829 75, 205105 (2007). 10.1103/PhysRevB.75.205105
  • Fattebert, J.-L., Gygi, F., Density functional theory for efficient ab initio molecular dynamics simulations in solution (2002) Journal of Computational Chemistry, 23 (6), pp. 662-666. , DOI 10.1002/jcc.10069
  • Scherlis, D.A., Fattebert, J.-L., Marzari, N., Stacking of oligo- and polythiophene cations in solution: Surface tension and dielectric saturation (2006) Journal of Chemical Physics, 124 (19), p. 194902. , DOI 10.1063/1.2198811
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (1992) Numerical Recipes in Fortran, , 2nd ed. (Cambridge University Press, New York)
  • Briggs, W.L., Emden Henson, V., McCormick, S.F., (2000) A Multigrid Tutorial, , 2nd ed. (SIAM, Philadelphia)
  • Trottenberg, U., Oosterlee, C.W., Schüller, A., (2001) Multigrid, , (Elsevier Academic Press, San Diego)
  • Hiemstra, T., Venema, P., Van Riemsdijk, W.H., Intrinsic proton affinity of reactive surface groups of metal (Hydr)oxides: The bond valence principle (1996) Journal of Colloid and Interface Science, 184 (2), pp. 680-692. , DOI 10.1006/jcis.1996.0666
  • Jolivet, J.-P., (2000) Metal Oxide Chemistry and Synthesis, , (Wiley, Chichester)
  • Baroni, S., Dal Corso, A., De Gironcoli, S., Giannozzi, P., Cavazzoni, C., Ballabio, G., Scandolo, S., Kokalj, A.,; Perdew, J.P., (1991) Electronic Structure of Solids 91, , in, edited by P. Ziesche and H. Eschrig (Akademie-Verlag, Berlin)
  • Vanderbilt, D., (1990) Phys. Rev. B, 41, p. 7892. , 0163-1829 10.1103/PhysRevB.41.7892
  • Marx, D., Hutter, J., (2000) Ab Initio Molecular Dynamics: Theory and Implementation, , in, Modern Methods and Algorithms of Quantum Chemistry, edited by J. Grotendorst (John Von Neumann Institute for Computing, Jülich)
  • Galli, G., Pasquarello, A., (1993) Computer Simulation in Chemical Physics, , in, edited by M. P. Allen and D. J. Tildesley (Kluwer-Academic, Dordrecht, The Netherlands)
  • Cossi, M., Barone, V., Cammi, R., Tomasi, J., (1996) Chem. Phys. Lett., 255, p. 327. , 0009-2614 10.1016/0009-2614(96)00349-1
  • Of course, the mere omission of V would not be an acceptable solution in molecular dynamics simulations since the energy conservation will be affected; The parameter Β is taken greater than 0.5. See Ref; Parr, R.G., Yang, W., (1989) Density-Functional Theory of Atoms and Molecules, , (Oxford University Press, New York)
  • Dabo, I., Canc̀s, E., Li, Y., Marzari, N., e-print arXiv:org/abs/0901.0096; Multigrid methods solve elliptic partial differential equations by applying a classic finite-differences iterative technique in meshes of different sizes (in this case we adopt the Gauss-Seidel scheme). See Ref. for an introduction and Ref. or Ref. for more specialized sources; The coefficients αn and Βn are given by α0 =0, α1 = 3 4, α2 =- 3 20, α3 = 1 60, α-n =- αn, Β0 =- 49 18, Β1 = 27 18, Β2 =- 27 180, Β3 = 2 180, and Β-n = Β n; Parks, G.A., (1965) Chem. Rev. (Washington, D.C.), 65, p. 177. , 0009-2665 10.1021/cr60234a002
  • Bandura, A.V., Sykes, D.G., Shapovalov, V., Troung, T.N., Kubicki, J.D., Evarestov, R.A., (2004) Langmuir, 108, p. 7844. , 0743-7463
  • Tilocca, A., Selloni, A., (2004) J. Phys. Chem. B, 108, p. 4743. , 1089-5647 10.1021/jp037685k
  • MacHesky, M.L., Pedota, M., Wesolowski, D.J., Vlcek, L., Cummings, P.T., Rosenqvist, J., Ridley, M.K., Sofo, J.O., (2008) Langmuir, 24, p. 12331. , 0743-7463 10.1021/la801356m
  • Henderson, M.A., (1996) Surf. Sci., 355, p. 151. , 0039-6028 10.1016/0039-6028(95)01357-1
  • Schaub, R., Thostrup, P., Lopez, N., Laegsgaard, E., Stensgaard, I., Norskov, J.K., Besenbacher, F., (2001) Phys. Rev. Lett., 87, p. 266104. , 0031-9007 10.1103/PhysRevLett.87.266104
  • Li, G., Li, L., Boerio-Goates, J., Woodfield, B.F., High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry (2005) Journal of the American Chemical Society, 127 (24), pp. 8659-8666. , DOI 10.1021/ja050517g
  • Vittadini, A., Selloni, A., Rotzinger, F.P., Grätzel, M., (1998) Phys. Rev. Lett., 81, p. 2954. , 0031-9007 10.1103/PhysRevLett.81.2954
  • Tilocca, A., Selloni, A., (2003) J. Chem. Phys., 119, p. 7445. , 0021-9606 10.1063/1.1607306
  • Lindan, P.J.D., Zhang, C., (2005) Phys. Rev. B, 72, p. 075439. , 0163-1829 10.1103/PhysRevB.72.075439
  • Pedota, M., Bandura, A.V., Cummings, P.T., Kubicki, J.D., Wesolowski, D.J., Chialvo, A.A., MacHesky, M.L., (2004) J. Phys. Chem. B, 108, p. 12049. , 1089-5647 10.1021/jp037197c
  • Kornherr, A., Vogtenhuber, D., Ruckenbauer, M., Podloucky, R., Zifferer, G., (2004) J. Chem. Phys., 121, p. 3722. , 0021-9606 10.1063/1.1772752
  • Torrie, G.M., Valleau, J.P., (1977) J. Comput. Phys., 23, p. 187. , 0021-9991 10.1016/0021-9991(77)90121-8
  • Badenhoop, J.K., Weinhold, F., (1997) J. Chem. Phys., 107, p. 5422. , 0021-9606 10.1063/1.475149
  • Cramer, C.J., Truhlar, D.G., (1991) J. Am. Chem. Soc., 113, p. 8305. , 0002-7863 10.1021/ja00022a017
  • Hawkins, G.D., Cramer, C.J., Truhlar, D.G., (1998) J. Phys. Chem. B, 102, p. 3257. , 1089-5647 See tables included in supporting information. 10.1021/jp973306+


---------- APA ----------
Sánchez, V.M., Sued, M. & Scherlis, D.A. (2009) . First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent. Journal of Chemical Physics, 131(17).
---------- CHICAGO ----------
Sánchez, V.M., Sued, M., Scherlis, D.A. "First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent" . Journal of Chemical Physics 131, no. 17 (2009).
---------- MLA ----------
Sánchez, V.M., Sued, M., Scherlis, D.A. "First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent" . Journal of Chemical Physics, vol. 131, no. 17, 2009.
---------- VANCOUVER ----------
Sánchez, V.M., Sued, M., Scherlis, D.A. First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent. J Chem Phys. 2009;131(17).