Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper we found the most stable structures of silicon-oxide clusters of Si6 Om (m=1-11) by using the genetic algorithm. In this work the genetic algorithm uses a semiempirical energy function, MSINDO, to find the best cluster structures of Si6 Om (m=1-11). The best structures found were further optimized using the density functional theory. We report the stable geometries, binding energies, lowest unoccupied molecular orbital-highest occupied molecular orbital gap, dissociation energies for the most favorable fragmentation channels and polarizabilities of Si6 Om (m=1-11). For most of the clusters studied here we report structures not previously found using limited search approaches on common structural motifs. © 2009 American Institute of Physics.

Registro:

Documento: Artículo
Título:Theoretical prediction of atomic and electronic structure of neutral Si6 Om (m=1-11) clusters
Autor:Caputo, M.C.; Oña, O.; Ferraro, M.B.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pab. I (1428) Buenos Aires, Argentina
Palabras clave:Cluster structures; Density functional; Dissociation energies; Energy functions; Fragmentation channels; Highest occupied molecular orbitals; Lowest un-occupied molecular orbitals; Oxide clusters; Polarizabilities; Semi-empirical; Stable structures; Structural motifs; Theoretical predictions; Binding energy; Density functional theory; Electronic structure; Molecular modeling; Molecular orbitals; Crystal atomic structure
Año:2009
Volumen:130
Número:13
DOI: http://dx.doi.org/10.1063/1.3080549
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v130_n13_p_Caputo

Referencias:

  • Helms, D.L., (1969) Elements of Physical Geology, , (Ronald, New York)
  • Morey, G.W., (1954) The Properties of Glass, , (Reinhold, New York)
  • Wang, W., Gu, B., Liang, L., Hamilton, W., (2003) J. Phys. Chem. B, 107, p. 3400. , 1089-5647 10.1021/jp0221800
  • Gole, J.L., Wang, Z.L., (2001) Nano Lett., 1, p. 449. , 1530-6984 10.1021/nl010048q
  • Desurvire, E., (1994) Phys. Today, 47, p. 20. , 0031-9228
  • Brus, L., (1994) J. Phys. Chem., 98, p. 3575. , 0022-3654 10.1021/j100065a007
  • Li, S., Silvers, S.J., El-Shall, M.S., (1997) J. Phys. Chem. B, 101, p. 1794. , 1089-5647 10.1021/jp963192m
  • Altman, I.S., Lee, D., Chung, J.D., Song, J., Choi, M., (2001) Phys. Rev. B, 63, p. 161402. , 0163-1829 10.1103/PhysRevB.63.161402, (R)
  • Glinka, Y.D., Lin, S.H., Lin, Y.T., Chen, Y.T., (2000) Phys. Rev. B, 62, p. 4733. , 0163-1829 10.1103/PhysRevB.62.4733
  • Bromley, S.T., (2004) Nano Lett., 4, p. 1427. , 1530-6984 10.1021/nl049330y
  • Van Beckkum, H., Jacobs, P.A., Flanigen, E.M., Jansen, J.C., (2001) Introduction to Zeolite Science and Practice, Studies in Surface Science and Catalysis, 137. , (Elsevier, Amsterdam), Vol
  • Wang, N., Tang, Y.H., Zhang, Y.F., Lee, C.S., Lee, S.T., (1998) Phys. Rev. B, 58, p. 16024. , 0163-1829 10.1103/PhysRevB.58.R16024, (R)
  • Anderson, J.S., Ogden, J.S., (1969) J. Chem. Phys., 51, p. 4189. , 0021-9606 10.1063/1.1671778
  • Wang, L.S., Nicholas, J.B., Dupuis, M., Wu, H., Colson, S.D., (1997) Phys. Rev. Lett., 78, p. 4450. , 0031-9007 10.1103/PhysRevLett.78.4450
  • Wang, L.S., Desai, S.R., Wu, H., Nicholas, J.B., (1997) Z. Phys. D, 40, p. 36. , 0031-9007 10.1007/s004600050152
  • Wang, L.S., Wu, H., Desai, S.R., Fan, J., Colson, S.D., (1996) J. Phys. Chem., 100, p. 8697. , 0022-3654 10.1021/jp9602538
  • Chelikowsky, J.R., (1998) Phys. Rev. B, 57, p. 3333. , 0163-1829 10.1103/PhysRevB.57.3333
  • Snyder, L.C., Raghavachari, K.J., (1984) J. Chem. Phys., 80, p. 5076. , 0021-9606 10.1063/1.446577
  • Zhang, R.Q., Chu, T.S., Cheung, H.F., Wang, N., Lee, S.T., (2001) Phys. Rev. B, 64, p. 113304
  • Song, J., Choi, M., (2002) Phys. Rev. B, 65, p. 241302. , 0163-1829 10.1103/PhysRevB.65.241302, (R)
  • Nayak, S.K., Rao, B.K., Jena, P., (1998) J. Chem. Phys., 109, p. 1245. , 0021-9606 10.1063/1.476675
  • Chu, T.S., Zhang, R.Q., Cheung, H.F., (2001) J. Chem. Phys., 105, p. 1705. , 0021-9606
  • Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648. , 0021-9606 10.1063/1.464913
  • Zhang, D., Zhao, M., Zhang, R.Q., (2004) J. Phys. Chem. B, 108, p. 18451. , 1089-5647 10.1021/jp0469620
  • Wang, H., Sun, J., Lu, W.C., Li, Z.S., Sun, C.C., Wang, C.Z., Ho, K.M., (2008) J. Phys. Chem. C, 112, p. 7097. , 1932-7447,. 10.1021/jp077159j
  • Zhang, Y.F., Tang, Y.H., Wang, N., Yu, D.P., Lee, C.S., Bello, I., Lee, S.T., (1998) Appl. Phys. Lett., 72, p. 1835. , 0003-6951 10.1063/1.121199
  • Zhang, R.Q., Lifshits, Y., Lee, S.T., (2003) Adv. Mater. (Weinheim, Ger.), 15, p. 635. , 0935-9648 10.1002/adma.200301641
  • Reber, A.C., Paranthaman, S., Clayborne, P.A., Khanna, S.N., Welford Castleman Jr., A., (2008) ACS Nano, 2, p. 1729. , 1936-0851,. 10.1021/nn7003958
  • Bazterra, V.E., Ferraro, M.B., Facelli, J.C., (2002) J. Chem. Phys., 116, p. 5984. , 0021-9606 10.1063/1.1458547
  • Bazterra, V.E., Oa, O., Caputo, M.C., Ferraro, M.B., Fuentealba, P., Facelli, J.C., (2004) Phys. Rev. A, 69, p. 053202. , 1050-2947 10.1103/PhysRevA.69.053202
  • Bazterra, V.E., Cuma, M., Ferraro, M.B., Facelli, J.C., (2005) J. Parallel Distrib. Comput., 65, p. 48. , 0743-7315 10.1016/j.jpdc.2004.09.011
  • Wales, D.J., Scheraga, H.A., (1999) Science, 285, p. 1368. , 0036-8075 10.1126/science.285.5432.1368
  • Wales, D.J., Hodges, M.P., (1998) Chem. Phys. Lett., 286, p. 65. , 0009-2614 10.1016/S0009-2614(98)00065-7
  • Kirkpatrick, S., Gellatt, C.D., Vecchi, M., (1983) Science, 220, p. 671. , 0036-8075 10.1126/science.220.4598.671
  • Oa, O., Bazterra, V.E., Caputo, M.C., Facelli, J.C., Fuentealba, P., Ferraro, M.B., (2006) Phys. Rev. A, 73, p. 053203. , 1050-2947 10.1103/PhysRevA.73.053203
  • Ahlswede, B., Jug, K., (1999) J. Comput. Chem., 20, p. 563. , 0192-8651 10.1002/(SICI)1096-987X(19990430)20:6<563::AID-JCC1>3.0. CO;2-2
  • Ahlswede, B., Jug, K., (1999) J. Comput. Chem., 20, p. 572. , 0192-8651 10.1002/(SICI)1096-987X(19990430)20:6<572::AID-JCC2>3.0. CO;2-1
  • Bredow, T., Geudtner, G., Jug, K., (2001) J. Comput. Chem., 22, p. 861. , 0192-8651 10.1002/jcc.1051
  • Zang, Q.J., Su, Z.M., Lu, W.C., Wang, C.Z., Ho, K.M., (2006) J. Phys. Chem. A, 110, p. 8151. , 1089-5639,. 10.1021/jp061517l
  • Zhang, R.Q., Fan, W.J., (2006) J. Cluster Sci., 17, p. 541. , 1040-7278 10.1007/s10876-006-0087-4
  • Johnston, R.L., Roberts, C., (2003) Soft Computing Approaches in Chemistry, 120, p. 161. , in, edited by H. M. Cartwright and M. Sztandera (Springer-Verlag, Heildberg), Vol.,
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., (1998), GAUSSIAN, Gaussian, Inc, Pittsburgh PA; Wang, H., Lu, W.C., Sun, C.C., Wang, C.Z., Ho, K.M., (2005) Phys. Chem. Chem. Phys., 7, p. 3811. , 1463-9076 10.1039/b509813k
  • Welford Castleman Jr., A., Khanna, S.N., Sen, A., Reber, A.C., Qian, M., Davis, K.M., Peppernick, S.J., Merritt, M.D., (2007) Nano Lett., 7, p. 2734. , 1530-6984 10.1021/nl071224j
  • The VEA and adiabatic (AEA), calculated with different methods of DFT are: 0.958 eV (VEA), 1.089 eV (AEA) for Si6 O7 and 0.907 eV (VEA), 0.971 eV (AEA) for Si6 O9, employing the B3LYP functional. They are instead, 1.024 eV (VEA), 1.184 eV (AEA) for Si6 O7 and 0.951 eV (VEA), 1.011 eV (AEA) for Si6 O9, employing the B3PWN functional. Therefore, Si6 O8 may be considered as a particular case for this property and the use of B3LYP o B3PWN is similar for the other systems considered in this manuscript; De Heer, W.A., (1993) Rev. Mod. Phys., 65, p. 661. , 0034-6861
  • Jackson, K.A., Yang, M., Chaudhuri, I., Frauenheim, Th., (2005) Phys. Rev. A, 71, p. 033205. , 1050-2947 10.1103/PhysRevA.71.033205
  • Deng, K., Yang, J., Chan, C.T., (2000) Phys. Rev. A, 61, p. 025201. , 1050-2947 10.1103/PhysRevA.61.025201
  • Pearson, R.G., (1968) J. Chem. Educ., 45, p. 981. , 0021-9584
  • Parr, R.G., Zhou, Z., (1993) Acc. Chem. Res., 26, p. 256. , 0001-4842 10.1021/ar00029a005
  • Lu, W.C., Wang, C.Z., Nguyen, V., Schmid, M.W., Gordon, M.S., Ho, K.M., (2003) J. Phys. Chem. A, 107, p. 6936. , 1089-5639 10.1021/jp027860h

Citas:

---------- APA ----------
Caputo, M.C., Oña, O. & Ferraro, M.B. (2009) . Theoretical prediction of atomic and electronic structure of neutral Si6 Om (m=1-11) clusters. Journal of Chemical Physics, 130(13).
http://dx.doi.org/10.1063/1.3080549
---------- CHICAGO ----------
Caputo, M.C., Oña, O., Ferraro, M.B. "Theoretical prediction of atomic and electronic structure of neutral Si6 Om (m=1-11) clusters" . Journal of Chemical Physics 130, no. 13 (2009).
http://dx.doi.org/10.1063/1.3080549
---------- MLA ----------
Caputo, M.C., Oña, O., Ferraro, M.B. "Theoretical prediction of atomic and electronic structure of neutral Si6 Om (m=1-11) clusters" . Journal of Chemical Physics, vol. 130, no. 13, 2009.
http://dx.doi.org/10.1063/1.3080549
---------- VANCOUVER ----------
Caputo, M.C., Oña, O., Ferraro, M.B. Theoretical prediction of atomic and electronic structure of neutral Si6 Om (m=1-11) clusters. J Chem Phys. 2009;130(13).
http://dx.doi.org/10.1063/1.3080549