Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The dielectric relaxation times of supercritical water SCW using the SPC/E model show strong deviations from the experimental measurements of K. Okada et al. (1997) in the low-density regime. The experimental dielectric relaxation time (DRT) exhibits a sharp rise as ρ decreases below 0.4 g/cm3, whereas a monotonic dependence of DRT with ρ is found in the simulations. Considering the overall highly nonexponential characteristics of the simulated normalized collective-dipole time correlation functions at low densities, the authors are led to believe that estimates for DRT obtained experimental by fitting the spectrum (up to 40 GHz) to a single Debye relation are likely to be highly uncertain.

Registro:

Documento: Artículo
Título:Dielectric relaxation of supercritical water: computer simulations
Autor:Skaf, M.S.; Laria, D.
Ciudad:Woodbury
Filiación:Instituto de Química, Universidade Estadual de Campinas, Cx. P. 6154, Campinas, SP, 13083-970, Brazil
Unidad Actividad Química, Comn. Nac. de Ener. Atómica, Av. Del Libertador 8250, (1429) Capital Federal, Argentina
Depto. de Quim. Inorg., Analitica Q., Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Capital Federal, Argentina
Palabras clave:Boundary conditions; Computer simulation; Dielectric relaxation; Diffusion; Molecular dynamics; Nuclear magnetic resonance spectroscopy; Permittivity; Temperature; Water; Dielectric loss frequency spectra; Molecular dynamic simulation; Supercritical water; Supercritical fluids
Año:2000
Volumen:113
Número:9
Página de inicio:3499
Página de fin:3502
DOI: http://dx.doi.org/10.1063/1.1289919
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v113_n9_p3499_Skaf

Referencias:

  • (1999) Chem. Rev., 99, p. 353
  • Fernández-Prini, R., Japas, M.L., (1994) Chem. Soc. Rev., 23, p. 155
  • Hutchenson, K.W., Foster, N.R., Innovations in Supercritical Fluids, Science and Technology (1995) ACS Symposium Series, 608. , American Chemical Society, Washington, DC
  • Balbuena, P.B., Flanagin, L.W., Johnston, K.P., Rossky, P.J., White, H.J., Sengers, J.V., Neumann, D.B., Bellogs, J.C., (1995) Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry, , Begell House, New York
  • Eckert, C.A., Knutson, B.L., Debenedetti, P.G., (1996) Nature (London), 383, p. 313
  • Guissani, Y., Guillot, B., (1993) J. Chem. Phys., 99, p. 8075
  • (1993) J. Chem. Phys., 98, p. 8221
  • Fois, E.S., Sprik, M., Parrinello, M., (1994) Chem. Phys. Lett., 223, p. 411
  • Kalinishev, A.G., Churakov, S.V., (1999) Chem. Phys. Lett., 302, p. 411
  • Gorbaty, Y.E., Kalinishev, A.G., (1995) J. Phys. Chem., 99, p. 5336
  • Soper, A.K., Bruni, F., Ricci, M.A., (1997) J. Chem. Phys., 106, p. 247
  • Jedlovszky, P., Brodholt, J.P., Bruni, F., Ricci, M.A., Sopper, A.K., Vallauri, R., (1998) J. Chem. Phys., 108, p. 8528
  • Bellissent-Funel, M.-C., Tassaing, T., Zhao, H., Beysens, D., Guillot, B., Guissani, Y., (1997) J. Chem. Phys., 107, p. 2942
  • Matubayasi, N., Wakai, C., Nakahara, M., (1997) Phys. Rev. Lett., 78, p. 2573
  • (1997) Phys. Rev. Lett., 78, p. 4309
  • (1997) J. Chem. Phys., 107, p. 9133
  • (1999) J. Chem. Phys., 110, p. 8000
  • Ikushima, Y., Hatakeda, K., Saito, N., Arai, M., (1998) J. Chem. Phys., 108, p. 5855
  • Walrafen, G.E., Yang, W.-H., Chu, Y.C., (1999) J. Phys. Chem. B, 103, p. 1332
  • Martí, J., (1999) J. Chem. Phys., 110, p. 6876
  • Bursulaya, B.D., Kim, H.J., (1999) J. Chem. Phys., 110, p. 9656
  • Okada, K., Yao, M., Hiejima, Y., Kohno, H., Kajihara, Y., (1997) J. Chem. Phys., 107, p. 9302
  • (1999) J. Chem. Phys., 110, p. 3026
  • Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., (1987) J. Phys. Chem., 91, p. 6269
  • Allen, M.P., Tildesley, D.J., (1987) Computer Simulations of Liquids, , Clarendon, Oxford
  • Madden, P., Kivelson, D., (1984) Adv. Chem. Phys., 56, p. 467
  • Uematsu, M., Franck, E.U., (1980) J. Phys. Chem. Ref. Data, 9, p. 1291
  • Flyvbjerg, H., Petersen, H.G., (1989) J. Chem. Phys., 91, p. 461
  • Reddy, M.R., Berkowitz, M., (1989) Chem. Phys. Lett., 155, p. 173
  • note; Böttcher, C.J.F., Bordewijk, P., (1978) Theory of Electric Polarization II, , Elsevier, Amsterdam
  • Hirschfelder, J.O., Curtis, C.F., Bird, R., (1954) Molecular Theory of Gases and Liquids, , Wiley, New York
  • Gordon, R.G., (1966) J. Chem. Phys., 44, p. 1830
  • Berne, B.J., Pecora, R., (1976) Dynamic Light Scattering, , Wiley, New York
  • Lamb, W.J., Jonas, J., (1981) J. Chem. Phys., 74, p. 913
  • Lamb, W.J., Hoffman, G.A., Jonas, J., (1981) J. Chem. Phys., 74, p. 6875
  • O'Dell, J., Berne, B.J., (1975) J. Chem. Phys., 63, p. 2376

Citas:

---------- APA ----------
Skaf, M.S. & Laria, D. (2000) . Dielectric relaxation of supercritical water: computer simulations. Journal of Chemical Physics, 113(9), 3499-3502.
http://dx.doi.org/10.1063/1.1289919
---------- CHICAGO ----------
Skaf, M.S., Laria, D. "Dielectric relaxation of supercritical water: computer simulations" . Journal of Chemical Physics 113, no. 9 (2000) : 3499-3502.
http://dx.doi.org/10.1063/1.1289919
---------- MLA ----------
Skaf, M.S., Laria, D. "Dielectric relaxation of supercritical water: computer simulations" . Journal of Chemical Physics, vol. 113, no. 9, 2000, pp. 3499-3502.
http://dx.doi.org/10.1063/1.1289919
---------- VANCOUVER ----------
Skaf, M.S., Laria, D. Dielectric relaxation of supercritical water: computer simulations. J Chem Phys. 2000;113(9):3499-3502.
http://dx.doi.org/10.1063/1.1289919