Artículo

Estamos trabajando para conseguir la versión final de este artículo
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The analytical infinite order sudden (IOS) quantum theory of triatomic photodissociation, developed in paper I, is applied to study the indirect photodissociation of NOCl through a real or virtual intermediate state. The theory uses the IOS approximation for the dynamics in the final dissociative channels and an Airy function approximation for the continuum functions. The transition is taken as polarized in the plane of the molecule; symmetric top wave functions are used for both the initial and intermediate bound states; and simple semiempirical model potentials are employed for each state. The theory provides analytical expressions for the photofragment yield spectrum for producing particular final fragment ro-vibrational states as a function of the photon excitation energy. Computations are made of the photofragment excitation spectrum of NOCl in the region of the T1(13A″) ←S0(11A′) transition for producing the NO fragment in the vibrational states nNO = 0, 1, and 2. The computed spectra for the unexcited nNO= = 0 and excited nNO = 2 states are in reasonable agreement with experiment. However, some discrepancies are observed for the singly excited nNO = 1 vibrational state, indicating deficiencies in the semiempirical potential energy surface. Computations for two different orientations of the in-plane transition dipole moment produce very similar excitation spectra. Calculations of fragment rotational distributions are performed for high values of the total angular momentum J, a feature that would be very difficult to perform with close-coupled methods. Computations are also made of the thermally averaged rotational energy distributions to simulate the conditions in actual supersonic jet experiments. © 1997 American Institute of Physics.

Registro:

Documento: Artículo
Título:Three-dimensional infinite order sudden quantum theory for indirect photodissociation processes. Application to the photofragment yield spectrum of NOCI in the region of the T1(13A″) ←S0(11A′) transition. Fragment rotational distributions and thermal averages
Autor:Grinberg, H.; Freed, K.F.; Williams, C.J.
Filiación:Deparramento de Física, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
James Franck Institute, Department of Chemistry, University of Chicago, Chicago, IL 60637, United States
Consejo Nac. de Invest. Cie. y Tec., Argentina
Palabras clave:Calculations; Dissociation; Electron energy levels; Electron transitions; Mathematical models; Nitrogen compounds; Photochemical reactions; Three dimensional; Indirect photodissociation processes; Three dimensional infinite order sudden quantum theory; Quantum theory
Año:1997
Volumen:107
Número:6
Página de inicio:1849
Página de fin:1860
DOI: http://dx.doi.org/10.1063/1.475124
Título revista:Journal of Chemical Physics
Título revista abreviado:J Chem Phys
ISSN:00219606
CODEN:JCPSA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219606_v107_n6_p1849_Grinberg

Referencias:

  • Leone, S.R., (1982) Adv. Chem. Phys., 50, p. 255
  • Simons, J.P., (1984) J. Phys. Chem., 88, p. 1287
  • Wen, Y., Segall, J., Dulligan, M., Wittig, C., (1994) J. Chem., 101, p. 5665
  • Reid, S.A., Reisler, H., (1994) J. Chem. Phys., 101, p. 5683
  • Never, D.W., Luo, X., Burak, I., Houston, P.L., (1995) J. Chem. Phys., 102, p. 1645
  • Freed, K.F., Band, Y.B., (1977) Excited States, 3, p. 109. , edited by E. C. Lin Academic, New York
  • Balint-Kurti, G.G., Shapiro, M., (1981) Chem. Phys., 61, p. 137
  • Shapiro, M., Bersohn, R., (1982) Annu. Rev. Phys. Chem., 33, p. 409
  • Brumer, P., Shapiro, M., (1985) Adv. Chem. Phys., 60, p. 371
  • Balint-Kurti, G.G., Shapiro, M., (1985) Adv. Chem. Phys., 60, p. 403
  • Balint-Kurti, G.G., Dixon, R.N., Marston, C.C., (1992) Int. Rev. Phys. Chem., 11, p. 317
  • Chen, C.J., Osgood, R.M., (1984) J. Chem. Phys., 81, p. 318
  • Schinke, R., Engle, V., Andersen, P., Häusler, D., Balint-Kurti, G.G., (1985) Phys. Rev. Lett., 55, p. 1180
  • Balint-Kurti, G.G., (1986) J. Chem. Phys., 84, p. 4443
  • Vegiri, A., Alexander, M.H., (1994) J. Chem. Phys., 101, p. 4722
  • Offer, A.R., Balint-Kurti, G.G., (1994) J. Chem. Phys., 101, p. 10416
  • Werner, H.J., Bauer, C., Rosmus, P., Keller, H.M., Stumpf, M., Schinke, R., (1995) J. Chem. Phys., 102, p. 3593
  • Desouter-Lecomte, M., Liévin, J., Brems, V., (1995) J. Chem. Phys., 103, p. 4524
  • Beswick, J.A., Shapiro, M., (1982) Chem. Phys., 64, p. 333
  • Segev, E., Shapiro, M., (1980) J. Chem. Phys., 73, p. 2001
  • (1982) J. Chem. Phys., 77, p. 5604
  • (1983) J. Chem. Phys., 78, p. 4969
  • Beswick, J.A., Requena, A.J., (1980) J. Chem. Phys., 72, p. 3018
  • Beswick, J.A., Delgado-Barrio, G., (1980) J. Chem. Phys., 73, p. 3653
  • Beswick, J.A., Jortner, J., (1977) Chem. Phys., 24, p. 1
  • Beswick, J.A., Jortner, J., (1978) J. Chem. Phys., 69, p. 512
  • Beswick, J.A., Delgado-Barrio, G., Jortner, J., (1979) J. Chem. Phys., 70, p. 3895
  • Halberstadt, N., Beswick, J.A., (1983) Faraday Discuss. Chem. Soc., 73, p. 357
  • Halavee, U., Shapiro, M., (1977) Chem. Phys., 21, p. 105
  • Kresin, V.Z., Lester Jr., W.A., (1982) J. Chem. Phys., 76, p. 2182
  • Atabek, O., Beswick, J.A., Lefebre, R., Mukamel, S., Jortner, J., (1976) J. Chem. Phys., 65, p. 4035
  • Morse, M.D., Freed, K.F., Band, Y.B., (1979) J. Chem. Phys., 70, p. 3604
  • Band, Y.B., Freed, K.F., Kouri, D.J., (1981) J. Chem. Phys., 74, p. 4380
  • Kouri, D.J., (1979) Atom-Molecule Collision Theory, , edited by R. B. Bernstein Plenum, New York
  • Heather, R.W., Light, J.C., (1983) J. Chem. Phys., 78, p. 5513
  • (1983) J. Chem. Phys., 79, p. 147
  • Band, Y.B., Freed, K.F., (1974) Chem. Phys. Lett., 28, p. 328
  • (1975) J. Chem. Phys., 63, p. 3382
  • (1975) J. Chem. Phys., 63, p. 4479
  • (1976) J. Chem. Phys., 64, p. 4329
  • (1977) J. Chem. Phys., 67, p. 1462
  • Morse, M.D., Freed, K.F., Band, Y.B., (1976) Chem. Phys. Lett., 44, p. 125
  • (1977) Chem. Phys. Lett., 49, p. 399
  • (1979) J. Chem. Phys., 70, p. 3620
  • Band, Y.B., Morse, M.D., Freed, K.F., (1979) Chem. Phys. Lett., 67, p. 294
  • Morse, M.D., Freed, K.F., (1980) Chem. Phys. Lett., 74, p. 49
  • (1981) J. Chem. Phys., 74, p. 4395
  • Morse, M.D., Freed, K.F., (1983) J. Chem. Phys., 78, p. 6045
  • Morse, M.D., Band, Y.B., Freed, K.F., (1983) J. Chem. Phys., 78, p. 6066
  • Beswick, J.A., Gelbart, W.M., (1980) J. Phys. Chem., 84, p. 3148
  • Grinberg, H., Freed, K.F., Williams, C.J., (1987) J. Chem. Phys., 86, p. 5456
  • Grinberg, H., Freed, K.F., Williams, C.J., (1990) J. Chem. Phys., 92, p. 7283
  • Grinberg, H., Freed, K.F., Williams, C.J., (1991) Chem. Phys. Lett., 182, p. 297
  • Grinberg, H., Williams, C.J., Freed, K.F., (1994) J. Chem. Phys., 100, p. 9215
  • Grinberg, H., Freed, K.F., Williams, C.J., (1997) J. Chem. Phys., 107, p. 1849. , preceding paper
  • Qian, C.X.W., Ogai, A., Iwata, L., Reisler, H., (1988) J. Chem. Phys., 89, p. 6547
  • Ogai, A., Qian, C.X.W., Reisler, H., (1990) J. Chem. Phys., 93, p. 1107
  • Bai, Y.Y., Ogai, A., Qian, C.X.W., Iwata, L., Segal, G.A., Reisler, H., (1989) J. Chem. Phys., 90, p. 3903
  • Qian, C.X.W., Ogai, A., Iwata, L., Reisler, H., (1990) J. Chem. Phys., 92, p. 4296
  • Kosloff, R., (1988) J. Phys. Chem., 92, p. 2087
  • Costain, C.C., (1970) Physical Chemistry-An Advanced Treatise, 4, p. 38. , edited by D. Henderson Academic, New York
  • Thompson, W.J., (1994) Angular Momentum, an Illustrate Guide to Rotational Symmetries for Physical Systems, , Wiley, New York
  • Jones, L.H., Ryan, R.R., Asprey, L.B., (1968) J. Chem. Phys., 49, p. 581
  • McDonald, J.K., Merrit, J.A., Kalasinsky, V.F., Heusel, H.F., Durig, J.R., (1986) J. Mol. Spectrosc., 117, p. 69
  • Huber, K.P., Herzberg, G., (1979) Molecular Spectra and Molecular Structure IV, Constants of Diatomic Molecules, p. 474. , Van Nostrand Reinhold, New York
  • Stull, D.R., Prophet, H., (1967) JANAF Thermochemical Tables, 2nd Ed., , Natl. Stand. Ref. Data Ser. Natl. Bur. Stand U.S. GPO, Washington, D.C
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (1992) Numerical Recipes in C, 2nd Ed., p. 656. , Cambridge, University Press, Cambridge
  • Godeve, C.F., Katz, S., (1939) Proc. R. Soc. London Ser. A, 172, p. 432
  • Vegiri, A., Untch, A., Schinke, R., (1992) J. Chem. Phys., 96, p. 3688

Citas:

---------- APA ----------
Grinberg, H., Freed, K.F. & Williams, C.J. (1997) . Three-dimensional infinite order sudden quantum theory for indirect photodissociation processes. Application to the photofragment yield spectrum of NOCI in the region of the T1(13A″) ←S0(11A′) transition. Fragment rotational distributions and thermal averages. Journal of Chemical Physics, 107(6), 1849-1860.
http://dx.doi.org/10.1063/1.475124
---------- CHICAGO ----------
Grinberg, H., Freed, K.F., Williams, C.J. "Three-dimensional infinite order sudden quantum theory for indirect photodissociation processes. Application to the photofragment yield spectrum of NOCI in the region of the T1(13A″) ←S0(11A′) transition. Fragment rotational distributions and thermal averages" . Journal of Chemical Physics 107, no. 6 (1997) : 1849-1860.
http://dx.doi.org/10.1063/1.475124
---------- MLA ----------
Grinberg, H., Freed, K.F., Williams, C.J. "Three-dimensional infinite order sudden quantum theory for indirect photodissociation processes. Application to the photofragment yield spectrum of NOCI in the region of the T1(13A″) ←S0(11A′) transition. Fragment rotational distributions and thermal averages" . Journal of Chemical Physics, vol. 107, no. 6, 1997, pp. 1849-1860.
http://dx.doi.org/10.1063/1.475124
---------- VANCOUVER ----------
Grinberg, H., Freed, K.F., Williams, C.J. Three-dimensional infinite order sudden quantum theory for indirect photodissociation processes. Application to the photofragment yield spectrum of NOCI in the region of the T1(13A″) ←S0(11A′) transition. Fragment rotational distributions and thermal averages. J Chem Phys. 1997;107(6):1849-1860.
http://dx.doi.org/10.1063/1.475124