Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An expression for the excess partial molar volume of electrolyte solutions was derived in the framework of the mean spherical approximation (MSA), This integral theory, an extension of the Debye - Hückel theory, includes the effect of the ion size in the radial ion - ion distribution function, and it allows the description of excess thermodynamic properties of electrolytes over a wide range of concentration. The general pressure and temperature dependence of the excess volume predicted by the model were analyzed for model electrolytes, and the results for NaCl aqueous solutions at temperatures up to 300 °C were compared with experimental data over a wide range of concentrations (up to 4 mol·kg-1). Crystallographic and adjustable ion diameters were used in the calculations, allowing reasonable predictions of the NaCl(aq) excess volume over different concentration regions. The effect of ion association, excluded volume, and reference system conversion were also analyzed. © 2009 American Chemical Society.

Registro:

Documento: Artículo
Título:Excess volume of electrolytes in the mean spherical approximation
Autor:Corti, H.R.
Filiación:Department of Physics of Condensed Matter, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Concentration regions; Electrolyte solutions; Excess partial molar volumes; Excess volumes; Excluded volumes; Experimental datum; Integral theories; Ion associations; Ion sizes; Mean spherical approximations; Nacl aqueous solutions; Pressure and temperatures; Reference systems; Distribution functions; Ions; Metallic glass; Sodium chloride; Thermodynamic properties; Electrolytes
Año:2009
Volumen:54
Número:2
Página de inicio:548
Página de fin:554
DOI: http://dx.doi.org/10.1021/je800498s
Título revista:Journal of Chemical and Engineering Data
Título revista abreviado:J Chem Eng Data
ISSN:00219568
CODEN:JCEAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219568_v54_n2_p548_Corti

Referencias:

  • Albert, H.J., Wood, R.H., High-precision flow densimeter for fluids at temperatures to 700 K and pressures to 40 MPa (1984) Rev. Sci. Iustrum, 55, pp. 589-593
  • Debye, P., Hückel, E., Zur Theorie der Elektrolvte. (1923) Zeitschr. Physik, 24, pp. 185-206
  • Gates, J.A., Wood, R.H., Density and apparent molar volume of aqueous calcium chloride at 323-600 K (1989) J. Chem. Eng. Data, 34, pp. 53-56
  • Majer, V., Hui, L., Crovetto, R., Wood, R.H., Volumetric properties of aqueous 1-1 electrolytes solutions near and above the critical temperature of water II. Densities and apparent molar volumes of LiCl(aq) and NaBr(aq) at molalities from 0.0025 mol·kg-1 to 3.0 mol·kg -1, temperatures from 604.4 to 725.5 K, and pressures from 18.5 to 38.0 MPa (1991) J. Chem. Thermodyn, 23, pp. 365-378
  • Simonson, J.M., Oakes, C.S., Bodnar, R.J., Densities of NaCl(aq) to the temperature 523 K at pressures to 40 MPa measured with a new vibrating-tube densitometer (1994) J. Chem. Thermodyn, 26, pp. 345-359
  • Hnedkovsky, L., Majer, V., Wood, R.H., Volumes and heat capacities of H3BO3(aq) at temperatures from 298.15 to 705 K and at pressures to 35 MPa (1995) J. Chem. Thermodyn, 27, pp. 801-814
  • Corti, H.R., Fernánde, R., Svarc, F.E., Densities and partial molar volumes of aqueous solutions of lithium, sodium and potassium hydroxide up to 250 °C (1990) J. Solution Chem, 19, pp. 793-809
  • Majer, V., Obsil, M., Hefter, G., Grolier, J.-P.E., Volumetric behavior of aqueous NaF and KF solutions up to 350°C and 30 MPa (1997) J. Solution Chem, 26, pp. 847-875
  • Sharygin, A.V., Wood, R.H., Densities of aqueous solutions of sodium carbonate and sodium bicarbonate at temperatures from 298 to 623 K and pressures to 28 MPa (1998) J. Chem. Thermodyn, 30, pp. 1555-1570
  • Hakin, A.W., Liu, J.L., Marriott, R.A., An investigation of the volumetric properties of β-alanine and sodium bromide in water at elevated temperatures and pressures (2000) J. Chem. Thermodyn, 32, pp. 1355-1380
  • Xie, W., Trevani, L., Tremaine, P.R., Apparent and standard partial molar heat capacities and volumes of aqueous tartaric acid and its sodium salts at elevated temperature and pressure (2004) J. Chem. Thermodyn, 36, pp. 127-140
  • Abdulagatov, I.M., Azizov, N.D., Densities, apparent molar volumes and viscosities of concentrated aqueous NaNO3 solutions at temperatures from 298 to 607 K and at pressures up to 30 MPa (2005) J. Solution Chem, 34, pp. 645-685
  • Born, M., Volumen und Hydratationswarme der Ionen. (1920) Zeitschr. Physik, 1, pp. 45-48
  • Wood, R.H., Quint, J.R., Grolier, J.-P.E., Thermodynamics of a charged hard sphere in a compressible dielectric fluid. A modification of the Born equation to include the compressibility of the solvent (1981) J. Phys. Chem, 85, pp. 3944-3949
  • Wood, R.H., Quint, J.R., Compressibility of a fluid substance in an electrostatic field (1989) J. Phys. Chem, 93, pp. 936-937
  • Tanger, J.C., Helgeson, H.C., Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard partial molal properties of ions and electrolytes (1988) Am. J. Sci, 288, pp. 19-98
  • Shock, E.L., Helgeson, H.C., Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C (1988) Gepchim. Cosmochim. Acta, 52, pp. 2009-2036
  • Fernande, R.J., Corti, H.R., Japas, M.L., (1992) High-temperature Aqueous Solutions: Thermodynamic Properties, , CRC Press: Boca Raton, EL
  • Millero, F.J., Molal volumes of electrolytes (1971) Chem. Rev, 71, pp. 147-176
  • Redlich, O., Mayer, D.M., The molal volumes of electrolytes (1964) Chem. Rev, 64, pp. 221-227
  • Laliberte, M., Cooper, W.E., Model for calculating the density of aqueous electrolvte solutions (2004) J. Chem. Eng. Data, 49, pp. 1141-1151
  • Pitzer, K.S., Thermodynamics of electrolytes. I. Theoretical basis and general equations (1973) J. Phys. Chem, 77, pp. 268-277
  • Oakes, C.S., Simonson, J.M., Bodnar, R.J., Apparent molar volumes of aqueous calcium chloride to 250°C, 400 bar. and from molalities of 0.242 to 6.150 (1995) J. Solution Chem, 24, pp. 897-916
  • Blum, L., Mean spherical model for asymmetric electrolytes I. Method of solution (1975) Mol. Phys, 30, pp. 1529-1535
  • Triolo, R., Grigera, J.R., Blum, L., Simple electrolytes in the mean spherical approximation (1976) J. Phys. Chem, 80, pp. 1858-1861
  • Triolo, R., Blum, L., Floriano, M.A., Simple electrolytes in the mean spherical approximation. 2. Study of a refined model (1978) J. Phys. Chem, 82, pp. 1368-1370
  • Humffray, A., Comment on, A., Theoretical single-ion activity of calcium and magnesium ions in aqueous electrolvte mixtures (1983) J. Phys. Chem, 87, pp. 5521-5522
  • Corti, H.R., Prediction of activity coefficients in aqueous electrolytes mixtures using the mean spherical approximation. (1987) J. Phys. Chem, 91, pp. 686-689
  • Perry, R.L., Massie, J.D., Cummings, P.T., An analytic model for aqueous electrolvte solutions based on fluctuation solution theory (1988) Fluid Phase Equilib, 39, pp. 227-266
  • Kirkwood, J.G., Buff, F.P., The Statistical Mechanical Theory of Solutions. 1 (1951) J. Chem. Phys, 19, pp. 774-777
  • O'Connell, J.P., Thermodynamic properties of solutions and the theory of fluctuations (1981) Fluid Phase Equilib, 6, pp. 21-38
  • Lu, J.F., Yu, Y.X., Li, Y.G., Modification and application of the mean spherical approximation method (1993) Fluid Phase Equilib, 85, pp. 81-100
  • O Connell, J. P.; DeGance, A. E. Thermodynamic properties of strong electrolytes solutions from correlation functions. J. Solution Chem. 1975, 4, 763-778; Stokes, R.H., Robinson, R.A., Ionic hydration and activity in electrolyte solutions (1948) J. Am. Chem. Soc, 70, pp. 1870-1878
  • Ornstein, L.S., Zernike, F., Accidental deviations of density and opalescence at the critical point of a single substance (1914) Proc. K. Ned. Akad. Wet, 17, pp. 793-806
  • Waisman, E., Lebowitz, J.L., Exact Solution of an Integral Equation for the Structure of a Primitive Model of Electrolytes (1970) J. Chem. Phys, 52, pp. 4307-4309
  • Waisman, E., Lebowitz, J.L., Mean Spherical Model Integral Equation for Charged Hard Spheres I. Method of Solution (1972) J. Chem. Phys, 56, pp. 3086-3093
  • Outhwaite, C.W., (1975) Statistical Mechanics: Specialist Periodical Reports, 2. , The Chemical Society;, Chapter 3
  • Blum, L., Høye, J.S., Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function (1977) J. Phys. Chem, 81, pp. 1311-1316
  • Hoye, J.S., Blum, L., The mean spherical model for asymmetric electrolytes: Thermodynamics and the pair correlation function (1978) Mol. Phys, 35, pp. 299-300
  • Hill, P.G., A unified fundamental equation for the thermodynamic properties of H2O (1990) J. Phys. Chem. Ref. Data, 19, pp. 1233-1274
  • (1997) Release on the Static Dielectric Constant of Ordinary Water Substance for Temperatures from 238 to 873 K and pressures up to 1000, , IAPWS, MPa
  • Rogers, P.S.Z., Pitzer, K.S., Volumetric properties of aqueous sodium-chloride solutions (1982) J. Phys. Chem. Ref. Data, 11, pp. 15-81
  • Friedman, H. L. Lewis-Randall to McMillan-Mayer conversion for the thermodynamics excess functions of solutions. Part 1. Partial free energy coefficients. J. Solution Chem. 1972, 1, 387-412; Svarc, F., (1992) Volumetric properties of electrolyte solutions at high temperatures, , Ph.D. Thesis, University of Buenos Aires
  • Sedlbauer, J., Wood, R.H., Thermodynamic properties of dilute NaCl (aq) solutions near the critical point of water (2004) J. Phys. Chem. B, 108, pp. 11838-11849
  • Mansoori, G.A., Carnahan, N.F., Starling Jr., K.E., Equilibrium thermodynamic properties of the mixture of hard spheres (1971) J. Chem. Phys, 54, pp. 1523-1525
  • Tikanen, A.C., Fawcett, W.R., Application of the mean spherical approximation and ion association to describe the activity coefficients of aqueous 1:1 electrolytes (1997) J. Electroanal. Chem, 439, pp. 107-113
  • Trevani, L.N., Balodis, E.C., Tremaine, P.R., Apparent and standard partial molar volumes of NaCl, NaOH, and HCl in water and heavy water at T = 523 and 573 K at P = 14 MPa (2007) J. Phys. Chem. B, 111, pp. 2015-2024

Citas:

---------- APA ----------
(2009) . Excess volume of electrolytes in the mean spherical approximation. Journal of Chemical and Engineering Data, 54(2), 548-554.
http://dx.doi.org/10.1021/je800498s
---------- CHICAGO ----------
Corti, H.R. "Excess volume of electrolytes in the mean spherical approximation" . Journal of Chemical and Engineering Data 54, no. 2 (2009) : 548-554.
http://dx.doi.org/10.1021/je800498s
---------- MLA ----------
Corti, H.R. "Excess volume of electrolytes in the mean spherical approximation" . Journal of Chemical and Engineering Data, vol. 54, no. 2, 2009, pp. 548-554.
http://dx.doi.org/10.1021/je800498s
---------- VANCOUVER ----------
Corti, H.R. Excess volume of electrolytes in the mean spherical approximation. J Chem Eng Data. 2009;54(2):548-554.
http://dx.doi.org/10.1021/je800498s