Artículo

Muglia, C.I.; Papa Gobbi, R.; Smaldini, P.; Orsini Delgado, M.L.; Candia, M.; Zanuzzi, C.; Sambuelli, A.; Rocca, A.; Toscano, M.A.; Rabinovich, G.A.; Docena, G.H. "Inflammation Controls Sensitivity of Human and Mouse Intestinal Epithelial Cells to Galectin-1" (2016) Journal of Cellular Physiology. 231(7):1575-1585
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Galectins play key roles in the inflammatory cascade. In this study, we aimed to analyze the effect of galectin-1 (Gal-1) in the function of intestinal epithelial cells (IECs) isolated from healthy and inflamed mucosa. IECs isolated from mice or patients with inflammatory bowel diseases (IBD) were incubated with different pro-inflammatory cytokines, and Gal-1 binding, secretion of homeostatic factors and viability were assessed. Experimental models of food allergy and colitis were used to evaluate the in vivo influence of inflammation on Gal-1 binding and modulation of IECs. We found an enhanced binding of Gal-1 to: (a) murine IECs exposed to IL-1β, TNF, and IL-13; (b) IECs from inflamed areas in intestinal tissue from IBD patients; (c) small bowel of allergic mice; and (d) colon from mice with experimental colitis. Our results showed that low concentrations of Gal-1 favored a tolerogenic micro-environment, whereas high concentrations of this lectin modulated viability of IECs through mechanisms involving activation of caspase-9 and modulation of Bcl-2 protein family members. Our results showed that, when added in the presence of diverse pro-inflammatory cytokines such as tumor necrosis factor (TNF), IL-13 and IL-5, Gal-1 differentially promoted the secretion of growth factors including thymic stromal lymphopoietin (TSLP), epidermal growth factor (EGF), IL-10, IL-25, and transforming growth factor (TGF-β1). In conclusion, we found an augmented binding of Gal-1 to IECs when exposed in vitro or in vivo to inflammatory stimuli, showing different effects depending on Gal-1 concentration. These findings highlight the importance of the inflammatory micro-environment of mucosal tissues in modulating IECs susceptibility to the immunoregulatory lectin Gal-1 and its role in epithelial cell homeostasis. © 2015 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Inflammation Controls Sensitivity of Human and Mouse Intestinal Epithelial Cells to Galectin-1
Autor:Muglia, C.I.; Papa Gobbi, R.; Smaldini, P.; Orsini Delgado, M.L.; Candia, M.; Zanuzzi, C.; Sambuelli, A.; Rocca, A.; Toscano, M.A.; Rabinovich, G.A.; Docena, G.H.
Filiación:Instituto de Estudios Inmunológicos y Fisiopatológicos-IIFP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y Consejo Nacional de Investigaciones Cientificas y Tecnicas, La Plata, Argentina
Departamento de Histología y Embriología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
Servicio de Enfermedades Inflamatorias, Hospital de Gastroenterología Bonorino Udaondo, Buenos Aires, Argentina
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:epidermal growth factor; galectin 1; interleukin 10; interleukin 13; interleukin 1beta; interleukin 25; interleukin 5; thymic stromal lymphopoietin; transforming growth factor beta1; tumor necrosis factor; galectin 1; animal cell; animal experiment; animal model; Article; cell function; cell viability; colitis; colon; controlled study; food allergy; human; human cell; in vivo study; inflammatory bowel disease; intestinal tissue; intestine epithelium cell; microenvironment; mouse; nonhuman; priority journal; protein binding; protein function; protein secretion; small intestine; animal; genetics; inflammation; inflammatory bowel disease; intestine mucosa; metabolism; pathology; tumor microenvironment; Animals; Cellular Microenvironment; Colitis; Colon; Food Hypersensitivity; Galectin 1; Humans; Inflammation; Inflammatory Bowel Diseases; Intestinal Mucosa; Mice
Año:2016
Volumen:231
Número:7
Página de inicio:1575
Página de fin:1585
DOI: http://dx.doi.org/10.1002/jcp.25249
Título revista:Journal of Cellular Physiology
Título revista abreviado:J. Cell. Physiol.
ISSN:00219541
CODEN:JCLLA
CAS:epidermal growth factor, 59459-45-9, 62229-50-9; galectin 1, 258495-34-0; interleukin 13, 148157-34-0; Galectin 1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219541_v231_n7_p1575_Muglia

Referencias:

  • An, G., Wei, B., Xia, B., McDaniel, J.M., Ju, T., Cummings, R.D., Braun, J., Xia, L., Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans (2007) J Exp Med, 204, pp. 417-429
  • Bacigalupo, M.L., Manzi, M., Espelt, M.V., Gentilini, L.D., Compagno, D., Laderach, D.J., Wolfenstein-Todel, C., Troncoso, M.F., Galectin-1 triggers epithelial-mesenchymal transition in human hepatocellular carcinoma cells (2015) J Cell Physiol, 230, pp. 1298-1309
  • Barrow, H., Rhodes, J.M., Yu, L.-G., The role of galectins in colorectal cancer progression (2011) Int J Cancer, 129, pp. 1-8
  • Baumgart, D.C., Carding, S.R., Inflammatory bowel disease: Cause and immunobiology (2007) Lancet, 369, pp. 1627-1640
  • Campbell, B.J., Yu, L.G., Rhodes, J.M., Altered glycosylation in inflammatory bowel disease: A possible role in cancer development (2001) Glycoconj J, 18, pp. 851-858
  • Cario, E., Pdolsky, D.K., Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease (2000) Infect Immun, 68, pp. 7010-7017
  • Ceska, M., Radioimmunoassay of IgE using paper disks (1981) Methods Enzymol, 73, pp. 646-656
  • Ciarlet, M., Crawford, S.E., Estes, M.K., Differential infection of polarized epithelial cell lines by sialic acid-dependent and sialic acid-independent rotavirus strains (2001) J Virol, 75, pp. 11834-11850. , http://www.pubmedcentral.nih.gov/articlerender.fc
  • Clark, J.A., Doelle, S.M., Halpern, M.D., Saunders, T.A., Holubec, H., Dvorak, K., Boitano, S.A., Dvorak, B., Intestinal barrier failure during experimental necrotizing enterocolitis: Protective effect of EGF treatment (2006) Am J Physiol Gastrointest Liver Physiol, 91, pp. G938-G949
  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Méndez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., Toscano, M.A., Rabinovich, G.A., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156, pp. 744-758
  • Demetter, P., Nagy, N., Martin, B., Mathieu, A., Dumont, P., Decaestecker, C., Salmon, I., The galectin family and digestive disease (2008) J Pathol, 215, pp. 1-12
  • Di Sabatino, A., Ciccocioppo, R., Luinetti, O., Ricevuti, L., Morera, R., Cifone, M.G., Solcia, E., Corazza, G.R., Increased enterocyte apoptosis in inflamed areas of Crohn's disease (2003) Dis Colon Rectum, 46, pp. 1498-1507
  • Elola, M.T., Wolfenstein-Todel, C., Troncoso, M.F., Vasta, G.R., Rabinovich, G.A., Galectins: Matricellular glycan-binding proteins linking cell adhesion, migration, and survival (2007) Cell Mol Life Sci, 64, pp. 1679-1700
  • Frol'ová, L., Smetana, K., Jr., Borovská, D., Kitanovicová, A., Klimesová, K., Janatková, I., Malícková, K., Tlaskalová-Hogenová, H., Detection of galectin-3 in patients with inflammatory bowel diseases: New serum marker of active forms of IBD? (2009) Inflamm Res, 58, pp. 503-512
  • Fu, J., Wei, B., Wen, T., Johansson, M.E., Liu, X., Bradford, E., Thomsson, K.A., Xia, L., Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice (2011) J Clin Investig, 121, pp. 1657-1666
  • Gerner, R.R., Moschen, A.R., Tilg, H., Targeting T and B lymphocytes in inflammatory bowel diseases: Lessons from clinical trials (2013) Dig Dis, 31, pp. 328-335
  • Hardy, H., Harris, J., Lyon, E., Beal, J., Foey, A.D., Probiotics, prebiotics and immunomodulation of gut mucosal defences: Homeostasis and immunopathology (2013) Nutrients, 5, pp. 1869-1912
  • Heller, F., Florian, P., Bojarski, C., Richter, J., Christ, M., Hillenbrand, B., Mankertz, J., Schulzke, J.D., Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution (2005) Gastroenterology, 129, pp. 550-564
  • Hittelet, A., Legendre, H., Nagy, N., Bronckart, Y., Pector, J.C., Salmon, I., Yeaton, P., Camby, I., Upregulation of galectins-1 and -3 in human colon cancer and their role in regulating cell migration (2003) J Int Cancer, 103, pp. 370-379
  • Hokama, A., Mizoguchi, E., Mizoguchi, A., Roles of galectins in inflammatory bowel disease (2008) World J Gastroenterol, 14, pp. 5133-5137
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., Geffner, J.R., Rabinovich, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin (2009) Nat Immunol, 10, pp. 981-991
  • Lee, J., Lee, E.N., Kim, E.Y., Park, H.J., Chang, C.Y., Jung, D.Y., Choi, S.Y., Kim, S.J., Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of inflammatory bowel disease (2005) Immunol Lett, 101, pp. 210-216
  • Li, M.O., Flavell, R.A., Contextual regulation of inflammation: A duet by transforming growth factor-beta and interleukin-10 (2008) Immunity, 28, pp. 468-476
  • Lippert, E., Gunckel, M., Brenmoehl, J., Bataille, F., Falk, W., Scholmerich, J., Obermeier, F., Rogler, G., Regulation of galectin-3 function in mucosal fibroblasts: Potential role in mucosal inflammation (2008) Clin Exp Immunol, 152, pp. 285-297
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method (2001) Methods, 25, pp. 402-408
  • Mahdavi, J., Royer, P.J., Sjölinder, H.S., Azimi, S., Self, T., Stoof, J., Wheldon, L.M., Ala'Aldeen, D.A., Pro-inflammatory cytokines can act as intracellular modulators of commensal bacterial virulence (2013) Open Biol, 3, p. 130048
  • Makins, R., Ballinger, A., Interleukin-5 potentiates the growth response of Caco-2 cells to IGF-II: A role in colonic carcinogenesis complicating ulcerative colitis (2005) Growth Horm IGF Res, 15, pp. 215-222
  • Maloy, K.J., Powrie, F., Intestinal homeostasis and its breakdown in inflammatory bowel disease (2011) Nature, 474, pp. 298-306
  • Mizoguchi, E., Mizoguchi, A., Is the sugar always sweet in intestinal inflammation (2007) Immunol Res, 37, pp. 47-60
  • Mowat, A.M., Basic mechanisms and clinical implications of oral tolerance (1999) Curr Opin Gastroenterol, 15, pp. 546-556
  • Mowat, A.M., Parker, L.A., Beacock-Sharp, H., Millington, O.R., Chirdo, F., Oral tolerance: Overview and historical perspectives (2004) Ann NY Acad Sci, 1029, pp. 1-8
  • Muglia, C., Mercer, N., Toscano, M.A., Schattner, M., Pozner, R., Cerliani, J.P., Gobbi, R.P., Docena, G.H., The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine (2011) Cell Death Dis, 2, p. e163
  • Munari, F., Fassan, M., Capitani, N., Codolo, G., Vila-Caballer, M., Pizzi, M., Rugge, M., de Bernard, M., Cytokine BAFF released by Helicobacter pylori-infected macrophages triggers the Th17 response in human chronic gastritis (2014) J Immunol, 193, pp. 5584-5594
  • Nalle, S.C., Turner, J.R., Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease (2015) Mucosal Immunol, 8, pp. 720-730
  • Neurath, M.F., Fuss, I., Kelsall, B.L., Stüber, E., Strober, W., Antibodies to interleukin 12 abrogate established experimental colitis in mice (1995) J Exp Med, 182, pp. 1281-1290
  • Neurath, M.F., Finotto, S., Fuss, I., Boirivant, M., Galle, P.R., Strober, W., Regulation of T-cell apoptosis in inflammatory bowel disease: To die or not to die, that is the mucosal question (2001) Trends Immunol, 22, pp. 21-26
  • Nikawa, T., Ikemoto, M., Kano, M., Tokuoka, K., Hirasaka, K., Uehara, S., Takatsu, K., Kishi, K., Impaired vitamin A-mediated mucosal IgA response in IL-5 receptor-knockout mice (2001) Biochem Biophys Res Commun, 285, pp. 546-549
  • Nikawa, T., Ikemoto, M., Tokuoka, K., Teshima, S., Alpers, D.H., Masui, Y., Kishi, K., Rokutan, K., Interleukin-1beta enhances retinoic acid-mediated expression of bone-type alkaline phosphatase in rat IEC-6 cells (2001) Am J Physio Gastrointest Liver Physiol, 280, pp. G510-G517
  • Nita-Lazar, M., Banerjee, A., Feng, C., Amin, M.N., Frieman, M.B., Chen, W.H., Cross, A.S., Vasta, G.R., Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding (2015) Mol Immunol, 65, pp. 1-16
  • Nusrat, A., Turner, J.R., Madara, J.L., Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: Nutrients, cytokines, and immune cells (2000) Am J Physio Gastrointest Liver Physiol, 279, pp. G851-G857
  • O'Connell, J., Bennett, M.W., Nally, K., O'Sullivan, G.C., Collins, J.K., Shanahan, F., Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis (2000) J Cell Physiol, 185, pp. 331-338
  • Olson, T.S., The primary defect in experimental ileitis originates from a nonhematopoietic source (2006) J Exp Med, 203, pp. 541-552
  • Ose, R., Oharaa, O., Nagase, T., Galectin-1 and galectin-3 mediate protocadherin-24-dependent membrane localization of β-catenin in colon cancer cell line HCT116 (2012) Curr Chem Genomics, 6, pp. 18-26
  • Paclik, D., Lohse, K., Wiedenmann, B., Dignass, A.U., Sturm, A., Galectin-2 and -4, but not galectin-1, promote intestinal epithelial wound healing in vitro through a TGF-beta-independent mechanism (2008) Inflamm Bowel Dis, 14, pp. 1366-1372
  • Paclik, D., Berndt, U., Guzy, C., Dankof, A., Danese, S., Holzloehner, P., Rosewicz, S., Sturm, A., Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice (2008) J Mol Med (Berl), 86, pp. 1395-1406
  • Paclik, D., Danese, S., Berndt, U., Wiedenmann, B., Dignass, A., Sturm, A., Galectin-4 controls intestinal inflammation by selective regulation of peripheral and mucosal T cell apoptosis and cell cycle (2008) PLoS ONE, 3, p. e2629
  • Planell, N., Lozano, J.J., Mora-Buch, R., Masamunt, M.C., Jimeno, M., Ordás, I., Esteller, M., Salas, A., Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations (2012) Gut, 62, pp. 967-976
  • Prasad, S., Mingrino, R., Kaukinen, K., Hayes, K.L., Powell, R.M., MacDonald, T.T., Collins, J.E., Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells (2005) Lab Invest, 85, pp. 1139-1162
  • Rabinovich, G.A., Liu, F.T., Hirashima, M., Anderson, A., An emerging role for galectins in tuning the immune response: Lessons from experimental models of inflammatory disease, autoimmunity and cancer (2007) Scand J Immunol, 66, pp. 143-158
  • Rabinovich, G.A., Daly, G., Dreja, H., Tailor, H., Riera, C.M., Hirabayashi, J., Chernajovsky, Y., Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis (1999) J Exp Med, 190, pp. 385-398
  • Randall-Demllo, S., Chieppa, M., Eri, R., Intestinal epithelium and autophagy: Partners in gut homeostasis (2013) Front Immunol, 4, p. 301
  • Santucci, L., Fiorucci, S., Rubinstein, N., Mencarelli, A., Palazzetti, B., Federici, B., Rabinovich, G.A., Morelli, A., Galectin-1 suppresses experimental colitis in mice (2003) Gastroenterology, 124, pp. 1381-1394
  • Siggers, R.H., Hackam, D.J., The role of innate immune-stimulated epithelial apoptosis during gastrointestinal inflammatory diseases (2011) Cell Mol Life Sci, 68, pp. 3623-3634
  • Smaldini, P., Curciarello, R., Candreva, A., Rey, M.A., Fossati, C.A., Petruccelli, S., Docena, G.H., In vivo evidence of cross-reactivity between cow's milk and soybean proteins in a mouse model of food allergy (2012) Int Arch Allergy Immunol, 158, pp. 335-346
  • Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernandez, S.F., Bassil, R., Rabinovich, G.A., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity, 37, pp. 249-263
  • Strober, W., Fuss, I.J., Nakamura, K., Kitani, A., Recent advances in the understanding of the induction and regulation of mucosal inflammation (2003) J Gastroenterol, 38, pp. 55-58
  • Sturm, A., de Souza, H.S.P., Fiocchi, C., Mucosal T cell proliferation and apoptosis in inflammatory bowel disease (2008) Curr Drug Targets, 9, pp. 381-387
  • Suzuki, T., Regulation of intestinal epithelial permeability by tight junctions (2013) Cell Mol Life Sci, 70, pp. 631-659
  • Tang, R., Yang, G., Zhang, S., Wu, C., Chen, M., Opposite effects of interferon regulatory factor 1 and osteopontin on the apoptosis of epithelial cells induced by TNF-α in inflammatory bowel disease (2014) Inflamm Bowel Dis, 20, pp. 1950-1961
  • Thagia, I., Shaw, E.J., Smith, E., Else, K.J., Rigby, R.J., Intestinal epithelial suppressor of cytokine signaling (SOCS) 3 enhances microbial induced inflammatory TNFα, contributing to epithelial barrier dysfunction (2014) Am J Physiol Gastrointest Liver Physiol, 308, pp. G25-G31
  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Zwirner, N.W., Rabinovich, G.A., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat Immunol, 8, pp. 825-834
  • Toscano, M.A., Commodaro, A.G., Ilarregui, J.M., Bianco, G.A., Liberman, A., Serra, H.M., Hirabayashi, J., Rabinovich, G.A., Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses (2006) J Immunol, 176, pp. 6323-6332
  • Trautmann, A., Schmid-Grendelmeier, P., Krüger, K., Crameri, R., Akdis, M., Akkaya, A., Bröcker, E.B., Akdis, C.A., T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma (2002) J Allergy Clin Immunol, 109, pp. 329-337
  • Van De Walle, J., Hendrickx, A., Romier, B., Larondelle, Y., Schneider, Y.J., Inflammatory parameters in Caco-2 cells: Effect of stimuli nature, concentration, combination and cell differentiation (2010) Toxicol In Vitro, 24, pp. 1441-1449
  • Weber, C.R., Raleigh, D.R., Su, L., Shen, L., Sullivan, E.A., Wang, Y., Turner, J.R., Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity (2010) J Biol Chem, 285, pp. 12037-12046
  • Williams, I.R., CCR6 and CCL20: Partners in intestinal immunity and lymphorganogenesis (2006) Ann NY Acad Sci, 1072, pp. 52-61
  • Yamada, T., (2008) Textbook of gastroenterology, , ed. Oxford, UK: Blackwell Publishing Ltd
  • Yeruva, S., Ramadori, G., Raddatz, D., NF-kappaB-dependent synergistic regulation of CXCL10 gene expression by IL-1beta and IFN-gamma in human intestinal epithelial cell lines (2008) Int J Colorectal Dis, 23, pp. 305-317
  • Zaph, C., Du, Y., Saenz, S.A., Nair, M.G., Perrigoue, J.G., Taylor, B.C., Troy, A.E., Artis, D., Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine (2008) J Exp Med, 205, pp. 2191-2198
  • Zeuthen, L.H., Fink, L.N., Frokiaer, H., Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta (2008) Immunology, 123, pp. 197-208
  • Zhou, P., Streutker, C., Borojevic, R., Wang, Y., Croitoru, K., IL-10 modulates intestinal damage and epithelial cell apoptosis in T cell-mediated enteropathy (2004) Am J Physiol Gastrointest Liver Physiol, 287, pp. G599-G604

Citas:

---------- APA ----------
Muglia, C.I., Papa Gobbi, R., Smaldini, P., Orsini Delgado, M.L., Candia, M., Zanuzzi, C., Sambuelli, A.,..., Docena, G.H. (2016) . Inflammation Controls Sensitivity of Human and Mouse Intestinal Epithelial Cells to Galectin-1. Journal of Cellular Physiology, 231(7), 1575-1585.
http://dx.doi.org/10.1002/jcp.25249
---------- CHICAGO ----------
Muglia, C.I., Papa Gobbi, R., Smaldini, P., Orsini Delgado, M.L., Candia, M., Zanuzzi, C., et al. "Inflammation Controls Sensitivity of Human and Mouse Intestinal Epithelial Cells to Galectin-1" . Journal of Cellular Physiology 231, no. 7 (2016) : 1575-1585.
http://dx.doi.org/10.1002/jcp.25249
---------- MLA ----------
Muglia, C.I., Papa Gobbi, R., Smaldini, P., Orsini Delgado, M.L., Candia, M., Zanuzzi, C., et al. "Inflammation Controls Sensitivity of Human and Mouse Intestinal Epithelial Cells to Galectin-1" . Journal of Cellular Physiology, vol. 231, no. 7, 2016, pp. 1575-1585.
http://dx.doi.org/10.1002/jcp.25249
---------- VANCOUVER ----------
Muglia, C.I., Papa Gobbi, R., Smaldini, P., Orsini Delgado, M.L., Candia, M., Zanuzzi, C., et al. Inflammation Controls Sensitivity of Human and Mouse Intestinal Epithelial Cells to Galectin-1. J. Cell. Physiol. 2016;231(7):1575-1585.
http://dx.doi.org/10.1002/jcp.25249